搜索资源列表
wavelet_report
- 信号处理是结构健康监测系统一个重要组成部分。小波变换作为有效的信号处理工具能对被分析信号进行更细致分析,获得比傅立叶分析更多的信号特征。将小波分析应用于航空结构材料的结构健康监测中,对检测信号进行时频局部化处理,获得与结构状态相联系的特征。-Signal processing is a structural health monitoring system an important part. Wavelet transform as an effective signal processing
xiaobofenxijiangyi
- 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 这套讲
ECGmonitoring
- 小波变换是一种信号的时间—尺度分析方法,它具有多分辨率分析的 特点,而且在时频两域都具有表征信号局部特征的能力。由于其在信号处 理领域表现出的优异性能,目前在生物医学领域,广泛应用于信号检测、 特征提取、图像处理、信号压缩等方面。 -Wavelet transform is a signal of the time- scale analysis method, it has the characteristics of multi-resolution analysis, bu
Wavelet-Analysis
- 小波分析是建立在泛函分析、调和分析、数值分析、逼近论和傅里叶分析等的基础上发展起来的新的时频分析方法。与经典的傅里叶分析相比较,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息,因此小波分析有着许多显著的优点。小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。 小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计
featureOfDWT
- Discrete Wavelet Transform,[1]离散小波变换是指在特定子集上采取缩放和平移的小波变换,是一种兼具时域和频域多分辨率能力的信号分析工具。此变换运用可以缩放平移的小波代替固定的窗进行计算分析,主要应用于信号编码和数据压缩-Discrete Wavelet Transform, [1] the discrete wavelet transform is adopted in a specific subset of the zoom and pan on the wavel
matlab小波变换程序
- 小波变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的"时间-频率"窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了