搜索资源列表
-
0下载:
用matlab实现的基于小波变换的图像增强去噪-achieved using Matlab based on wavelet transform image enhancement and denoising
-
-
0下载:
该仿真算法实现了论文Image Denoising
using Scale Mixtures of Gaussians in the Wavelet Domain中图像降噪,This Algorithm utilize the method of paper "Image Denoising using Scale Mixtures of Gaussians in the Wavelet Domain "
-
-
1下载:
利用小波变换进行图像去噪,计算去噪图像的峰值信噪比,简单容易操作。-Image denoising using wavelet transform, image denoising PSNR calculation, simple and easy to operate.
-
-
0下载:
利用小波变换的去噪代码,用于图像处理,这是毕业设计的程序-Denoising using wavelet transform code for image processing, which is designed for graduate programs
-
-
0下载:
本程序可以实现利用小波变换对图像和数字信号的进行去噪-This procedure can be achieved using wavelet transform for image and digital signal Denoising
-
-
0下载:
图像的小波去噪,给灰度图像加上一定量的高斯噪声,再采用小波变换的方法去噪.-Wavelet Denoising image to gray image coupled with a certain amount of Gaussian noise, and then using the method of wavelet transform de-noising.
-
-
0下载:
This code describes about image denoising.
How we denoise the image and do compression using wavelet -This code describes about image denoising.
How we denoise the image and do compression using wavelet
-
-
0下载:
image denoising using wavelets with soft thresholding
-
-
2下载:
使用小波变换进行图像去噪,对得到的高频部分利用软阈值和硬阈值法去噪-Image denoising using wavelet transform, the high frequency part by the use of soft threshold and hard threshold denoising
-
-
0下载:
通过小波变换对图像信号进行分解,去噪,压缩再重构,得到处理后的图像-Images using wavelet transform signal decomposition, denoising, compression and then reconstructed to obtain the processed image
-
-
0下载:
to denoise using wavelet
-
-
0下载:
这是一段用matlab编写的小波变换用来对图像进行去噪的代码-This is a period of wavelet transform using matlab code for image denoising
-
-
0下载:
各种方法的去噪程序
den1.m 使用半软阈值方法对图像进行去噪
den1_5_1.m 半软阈值的改进方法 对第一层重构图像进行均值滤波
den1_9.m 半软阈值的改进方法 将线性衰减的函数改为指数的
den1_10.m 半软阈值的改进方法 对第一层的重构图像再次进行小波阈值去噪
den2.m 用软硬阈值函数的改进方法进行去噪
den3.m 用广义阈值函数进行去噪
den4.m 用自适应特征阈值函数进行去噪
wdenoise
-
-
1下载:
利用小波变换实现图像处理,包括图像平滑,去噪,边缘检测,运算,等等(Using wavelet transform to achieve image processing, including image smoothing, denoising, edge detection, computing, and so on)
-