搜索资源列表
malic
- Malic是一个完整的Linux下的人脸识别系统源代码,它是SourceForge上的一个开源项目,使用Malib实现实时处理,CSU Face Identification Evaluation System进行人脸识别。算法包括:主成份分析(principle components analysis (PCA)),a.k.a eigenfaces算法,混合主成份分析,线性判别分析(PCA+LDA),图像差分分类器(IIDC),弹性图像匹配算法(EBGM)
PCA
- PCA 主成份分析法 用于人脸识别中的图像处理方法-PCA face recognation
compute_eig
- 利用主成份分析PCA和傅立叶变换训练图像并用最近邻法进行识别分类-Using principal component analysis PCA and Fourier transform training images and used to identify the nearest neighbor classification method
zhuchengfenfenxi
- 主成份分析(PCA)实现的一段源程序,比较容易懂-The principal component analysis (PCA) among of the realization of the program is easy to understand
PCA
- 对人脸图像进行主成份分析,并显示训练子空间的特征脸。-Principal component analysis of face images, and displays the characteristics of the training subspace face.
face1
- 人脸识别的完整代码。能进行主成份分析,混合主成份分析,线性判别分析,弹性图像匹配算法等。-Complete code for face recognition. Principal component analysis, the hybrid principal component analysis, linear discriminant analysis, elastic image matching algorithm.
PCA
- 人脸识别 pca(主成份分析) matlab代码-matlab pca
imm3620
- 多元变化检测(MAD)、最大自相关因子(MAF)、典型相关分析(CCA)、主成份分析(PCA)的Matlab代码-Matlab code to perform multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PC
00128PCA
- PCA主成份分析的matlab程序,有需要的朋友可以下载下来-Principal component analysis PCA matlab program, a friend in need can be downloaded to see
PCA-SVM
- 本程序使用MATLAAB R2014a 编写,基于PCA_SVM的人脸识别程序。程序包括主成份分析、SVM核函数,并附带了人脸库,使之能够直接调用人脸库图像进行人脸识别-The program uses MATLAAB R2014a written procedure based on recognition of PCA_SVM. Program includes principal component analysis, SVM kernel function, and comes face
PCA_based
- 本程序使用MATLAAB R2014a 编写,基于PCA的人脸识别程序。主要使用的是用PCA(主成份分析)方法。文件附带了人脸库,可以直接使用。-This procedure using MATLAB R2014a written PCA-based face recognition program. The main use is to use PCA (Principal Component Analysis) method. Documentation that came with the
pca
- 主成份分析代码,实现对信号的主成分分析和实现,有利于更好理解这部分功能。(Principal component analysis code, to achieve the main component of the signal analysis and implementation, is conducive to a better understanding of this part of the function)