搜索资源列表
chirplet_analasis
- 一种自适应chirplet分解的快速算法 针对信号自适应chirplet分解未知参数多、实现起来比较困难的特点,文献[1]提出了一种新的chirplet分解快速算法。该算法利用计算信号的二次相位函数,得到其能量分布集中于信号的调频率曲线上的结论,此时通过谱峰检测可同时获得chirplet调频率、时间中心和幅度的估计;然后通过解线性调频技术获得其初始频率和宽度的估计,仿真结果验证了本文算法的有效性。 -Chirplet an adaptive decomposition al
gg_mle
- 压缩包中的算法使用moment matching和MLE估计矩阵的广义高斯分布参数,推荐一下。-Compression package using the moment matching algorithms and the estimated matrix of MLE parameters of generalized Gaussian distribution, recommend.
300
- 了一种基于融合和广义高斯模型的遥感影像变化检测算法。该算法融合差值影像和比值影像的结 果构造差异影像,然后运用灰度形态学对差异影像进行顾及空间邻域关系的处理,再对处理后的结果运用广义高 斯分布模型估计变化与非变化像元的概率密度参数,最后采用改进的O2 算法计算最佳分割阈值,提取变化区域。 实验结果表明,所提出的变化检测算法稳健、高效,具有较大的实用价值。-0LDI TCTUG TGUIUNVI C MLCNEU WUVUMVD5N CTTG5CML 5X GUB5VU IUNIDNE
03
- 类的目的就是根据现有的图像特征建立一个分类器,能够对未知的图像类型进行预测。在现有众多分类 算法中,贝叶斯分类器由于其坚实的数学理论基础并能综合先验信息和数据样本信息,成为"-3前机器学习和数据挖 掘的研究热点之一。本文论述了内容图像检索中基于贝叶斯分类器的图像分类技术。介绍了贝叶斯分类器,叙述了 利用贝叶斯分类器进行图像分类的方法,以及图像特征的分布假定。最后通过对分类器的探讨,总结了贝叶斯估计 分类的不足。-The purpose of class is based on a
gaosi
- 针对现有运动目标检测算法不能很好去除阴影的问题, 在利用混合高斯模型进行目标检测的基础上, 提 出了一种有效的阴影抑制算法。该算法充分考虑了系统噪声和背景模型误差, 并用高斯分布的方差信息估计背景模 型误差, 然后用误差估计值来修正阴影模型, 进而实现阴影抑制。实验结果表明 该阴影抑制算法不受光线强弱、 图像质量、目标大小的限制, 具有较强的适应性, 可以更有效的抑制阴影对运动目标检测的影响。-algorithm h
m12
- 针对核密度估计背景建模方法运算量大难以实时应用的问题,提出了一种基于背景直方图分布的快速核密度估计背景建模方法。选用三角核函数进行核密度估计,根据三角核带宽函数的截断效应,引入背景分布的直方图完成快速背景建模,在保证目标检测准确性的同时提高运算速度。测试实验结果验证了算法能够满足监控系统的实时性要求。-For kernel density estimation is difficult to satisfy real-time applications because of large amou
EmGMM
- 高斯混合模型的最大期望迭代求解算法,可用于图像区域灰度分布估计-Expectation maximazation(EM) for Gaussian mixture model(GMM)