搜索资源列表
SVM_FACE
- 基于支持向量机的人脸检测训练集增强算法实现。根据支持向量机(support vector machine,简称SVM)~ ,对基于边界的分类算"~(geometric approach)~ 言,类别边界附近的样本通常比其他样本包含有更多的分类信息.基于这一基本思路,以人脸检测问题为例.探讨了 对给定训练样本集进行边界增强的问题,并为此而提出了一种基于支持向量机和改进的非线性精简集算法 IRS(improved reduced set)的训练集边界样本增强算法,用以扩大-91l练集并改
algorithmbehavior
- 针对行为识别中行为者朝向变化带来的问题,提出了一种基于人体行为3D模型的2D行为识别算法.在学习行为 分类器时,以3D占据网格表示行为样本,提取人体3D关节点作为描述行为的特征,为每一类行为训练一个基于范例的隐马 尔可夫模型(Exemplar-based hidden Markov model,EHMM),同时从3D行为样本中选取若干帧作为3D关键姿势集,这个 集合是连接2D观测样本和人体3D关节点特征的桥梁.在识别2D行为时,2D观测样本序列可以由一个或多个非标定的摄 像机采集
000
- 支持向量机(svM)是一种新的机器学习技术。本文采用一对一方法构建多分类SVM 分类器。利用常用的灰度共生矩阵方法提取图像纹理特征,组成特征向量,输入构建好的SVM 多分类器中进行分类。对从Brodatz纹理库中选取的4张纹理图像进行了分类实验,取得较好的 分类结果-Support vector machine (svM) is a new machine learning techniques. In this paper, one way to build a multi-cla
01
- 的研究彩色数字图像的计算机分类识别方法并应用于古瓷片的自动分类。方法提出 了一种色彩纹理特征的提取模型,采用该模型,利用IGabor滤波器提取数字图像的色彩纹理特征, 并构造支持向量分类机(SVM)分类器组。结果实现了高准确率多类别图像的自动分类识别,并 成功应用于古瓷片的自动分类。结论色彩纹理特征提取方法将颜色与纹理进行融合,增强了数 字图像之间的特征区分能力。-Study color digital image classification and recognition m
FeatureExtraction-(1)
- 绿色植物具有明显的光谱反射特征,而这种特征与植被的发育、健康状况以及生长条件密切相关。传统的宽波段、多光谱遥感数据对于植被的研究仅限于一般性的红光吸收特征和近红外的反射特征[1-3],以及中红外的水吸收特征[4-6]。高光谱遥感通过对不同类型植被的生物物理化学成分含量的估算能获得较为理想的植被生态学信息,并在提取植被信息中得到大量的应用和研究[7-10]。高光谱遥感器的出现为改进现有的分类算法,进一步提高植被分类精度提供了可能。高光谱遥感技术已经应用于湿地分类、边界、水体、湿地植被和湿地生境因子
recognition-algorithm-design
- 运用帧差序列图像进行背景建模与更新,采用背景差分和LBP纹理分析法进行运动车辆的分割及阴影消除。提出车辆形状投影量的概念,将视频车辆二维形状信息降至一维,并设计二维输入模糊分类器,根据形状投影量和车高,车长比,完成车型的多种类精细识别。-Frame difference image sequence background modeling and updating, background subtraction and the LBP texture analysis method for th
Improved-ICA-character-recognition
- 该算法一种结合改进的基于独立分量分析(ICA)提取算法和基于多层感知器和单向二叉决策树的多类支持向量机分类方法。-The algorithm is a combination of improved based on independent component analysis (ICA) algorithm and multi-class support vector machine classification method based on binary decision tree of
jsgd-61
- 该代码采用matlab和C混合编写,是采用随机梯度的方法训练线性分类器,它可用于数据、图像等的多类分类情况。参考论文:Good Practice in Large-Scale Learning for Image Classification-This a Stochastic Gradient Descent algorithm used to train linear multiclass classifiers. It is biased towards large classificat
CT-tracking
- 一种简单高效地基于压缩感知的跟踪算法。首先利用符合压缩感知RIP条件的随机感知矩对多尺度图像特征进行降维,然后在降维后的特征上采用简单的朴素贝叶斯分类器进行分类。该跟踪算法非常简单,但是实验结果很鲁棒,速度大概能到达40帧/秒-A simple and efficient tracking algorithm based on compressed sensing. Firstly, with the random sensing matrix compressed sensing RIP co
MIMLmiSVM
- matlab编写的多示例多标记分类程序,采用miSVM算法,svm做分类器,其中附有各个调用函数,和作为例子的数据和主程序,可以运行,可以多多示例多标记样本进行分类。-matlab prepared multi-instance multi-label classification procedures, using miSVM algorithm, svm do classifier, which function with each call, and as an example of th
CT_code_matlab
- 一种简单高效地基于压缩感知的跟踪算法。首先利用符合压缩感知RIP条件的随机感知矩对多尺度图像特征进行降维,然后在降维后的特征上采用简单的朴素贝叶斯分类器进行分类-Real-time Compressive Tracking proposed by Kaihua Zhang in The Hong Kong Polytechnic University
cooc_feature_matrix
- 在holcon中使用多层次感知器对图像进行分类-completeness check of colored game pieces using MLP classification
one
- 基于叶片数字图像的植物识别是自动植物分类研究的热点。但是随着植物种类的增加,传统的分类方法由 于提取的特征比较单一或者分类器结构过于简单,导致叶片识别率较低。为此,本文提出使用纹理特征结合形状 特征进行识别,并且使用深度信念网络构架作为分类器。纹理特征通过局部二值模式、Gabor 滤波和灰度共生矩阵 方法得到。而形状特征向量由 Hu 氏不变量和傅里叶描述子组成。为了避免过拟合现象,使用“dropout”方法训练 深度信念网络。这种基于多特征融合的深度信念网络的植物识别方法-Plant based
two
- :植物种类识别方法主要是根据叶片低维特征进行自动化鉴定。然而,低维特征不能全面描述叶片信息,识别准确率低,本文提 出一种基于多特征降维的植物叶片识别方法。首先通过数字图像处理技术对植物叶片彩色样本图像进行预处理,获得去除颜色、虫洞、 叶柄和背景的叶片二值图像、灰度图像和纹理图像。然后对二值图像提取几何特征和结构特征,对灰度图像提取 Hu不变矩特征、灰 度共生矩阵特征、局部二值模式特征和 Gabor 特征,对纹理图像提取分形维数,共得到 2183 维特征参数。再采用主成分分析与线性 评判分析相
MyCode
- cnn结合xgboost代码,用于多分类器的设计(CNN related code,combined with xgboost,it is used to classify things.)