搜索资源列表
MultiGaussian
- 视频监控,图像序列运动目标识别。基于多高斯背景模型,可实时实现运动目标的自动检测。-video surveillance, image sequence moving target identification. For more background Gaussian model, the immediate goal of the campaign to achieve automatic detection.
originpro
- 背景消除方法:利用多维高斯混合模型,建立背景模型。虽然速度慢了点,但是方法很好,希望能给大家一点帮助:)
code.rar
- 视频运动物体检测,采用混合高斯分布建立背景模型及差分方法对背景模型进行更新,Sports video object detection, adopt a mixed Gaussian distribution model and set up the background difference method to update the background model
Background_GMM.rar
- 混合高斯模型,建立背景模型,从而可以分离前景与背景,Gaussian mixture model, background model, which can be separated from foreground and background
GuassionModel.rar
- 基于混合高斯模型的运动目标检测,值得学习,对背景更新相当有效,opencv程序
BGFG_CODEBOOK
- 基于码书的运动目标检测是和混合高斯模型(MoG,GMM)类似的而简单有效的背景剪除方法,附件是VC++6.0编写的基于码书的运动目标检测,可直接读取摄像头,也可改为读取硬盘视频文件,需安装Opencv1.1-Codebook-based moving target detection and Gaussian mixture model (MoG, GMM) and a similar cut off the background simple and effective method of a
backgroundSubtraction_v0
- 基于graphcut的背景建模程序,其中具备阴影去除功能,建模时对rgb三个颜色通道进行了高斯模型训练。程序需要OpenCV 1.0 的支持。-This is a C implementation of background subtraction given a set of background frames as a training set.The background model is per-pixel RGB space Gaussian, assuming independenc
AVI
- 光流法、帧间差分法、高斯背景模型差分法,在opencv环境下实现运动目标检测-moving objective detection matlab
DIP
- 图像的操作,及视频流的相关操作,基于opencv,运动目标检测,中值滤波,高斯背景模型,混合高斯模型-The operation of the image, and video streams related operations, based on the opencv, motion detection, median filtering, Gaussian background model, Gaussian mixture model
backgroundSubtraction
- 基于颜色特征的背景模型的算法程序,具有光照不变性,可处理光照变化环境下的运动目标检测-Based on the color characteristics of the algorithm for background model procedures, with illumination invariance, illumination changes in the environment can be handled under the moving target detection
gaussbackground
- 应用高斯模型进行进行建模,具有建立背景速度快,更新准确等特点。-Application of Gaussian model to model, with the establishment of the background of fast, accurate updates.
mulGMM_matlab
- 多高斯模型是检测运动目标的一种背景消减的方法,matlab实现-Multi-Gaussian model is a moving target detection background abatement methods, matlab achieve
1
- 自适应核密度估计运动检测方法 提出一种自适应的核密度(kernel density estimation, KDE)估计运动检测算法. 算法首先提出一种自适应前景、背景阈值的双阈值选择方法, 用于像素分类. 该方法用双阈值能克服用单阈值分类存在的不足, 阈值的选择能自适应进行, 且能适应不同的场景. 在此基础上, 本文提出了基于概率的背景更新模型, 按照像素的概率来更新背景, 并利用帧间差分背景模型和KDE分类结果, 来解决背景更新中的死锁问题, 同时检测背景的突然变化. 实验证明了所提出
gussmodel
- 混合高斯模型建模,对视频中背景进行混合高斯建模,在摄像机不动的环境中应用广泛-Gaussian Mixture Modeling of video Gaussian mixture background modeling, at the fixed cameras are widely used environment
background_gen_c
- 通过读取视频流,基于OpenCV建立背景模型,以用于前景检测-By reading the video stream, based on the OpenCV ,generate background model for the foreground pixels detection
mixture_of_gaussians
- 这是一个视频图像处理的程序,通过混合高斯分布来建立背景模型,并且提取了运动目标,效果不错!-mixture of gaussians
framedifference
- 通过帧差法来提取背景的程序,效果不错 ‘-通过帧差法来提取背景的程序,效果不错通过帧差法来提取背景的程序,效果不错
高斯混合模型GMM-latentSpace-v2.0
- 用于背景建模实现视频运动目标分割 与目标跟踪算法(For background modeling, video moving object segmentation and object tracking algorithm)
MATLAB_高斯模型
- 用高斯模型算法来处理视频,提取前景信息,适合动态背景(Gauss model algorithm is used to process video and extract foreground information, which is suitable for dynamic background)
背景差分法
- 基于阈值的高斯混合模型的背景差分法,适合初学者(Background difference method based on threshold-based Gaussian mixture model, suitable for beginners)