搜索资源列表
Harris
- 研究一种红外医学图像处理与分析方法,实现红外人脸图像中特征区域的自动定位。方法 针对红外正面脸部图像,采用一种无监督的局部和全局的特征提取方法,首先通过阈值法区分出前景和 背景,并根据面部特征对称性在前景中确定鼻区 然后在面部确定一个包含所有特征的矩形区域,利用 Harris算子在该区域检测出角点,并找出这些点的局部最大值点 最后用K-means方法对这些点进行 聚类 -To develop an mi age analyzing procedure forautomatic
background-model3
- 针对背景差法易受外界环境因素影响的缺点, 提出了一种基于改进K-均值聚类的背景建模方法。通过比较任意样本与该像素位置处的子类中心之间的距离, 对各个像素的观察值进行聚类, 并在聚类过程中逐步确定其类别数。一段时间的学习之后, 样本数最多的子类就构成了背景模型。仿真结果表明, 该算法即使在运动目标存在的情况下也能准确的提取出实际的 背景, 而且显著地降低了系统的存储量。-Aimed at the disadvantage that background subtraction was liab