搜索资源列表
-
0下载:
模式识别的
图像的贝叶斯分类
图像的贝叶斯分类
神经网络模式识别-Bayesian pattern recognition image classification image of the Bayesian classifier neural network pattern recognition
-
-
0下载:
程序代码说明神经网络的实例 ,确实是个好-. the problem of multi-variate collinearity with an example based on neural network
-
-
0下载:
本文讨论了小波神经网络在机动多目标跟踪中的应用,多目标跟踪就是主体为了维持对多个目标(客体)当前状态的估计而对所接收的量测信息进行处理的过程。以非线性大规模并行分布式处理为特征的神经网络可以解决传统的目标跟踪方法的难以解决的计算量组合爆炸问题以及需要确定机动目标的数学模型的问题, 将小波分析原理与神经网络相融合,提出了基于小波神经网络的目标跟踪方法来提高系统的学习能力、表达能力以及机动多目标状态的估计精度。-This article discusses the application of wa
-
-
0下载:
多层前向反馈式神经网络是目前应用比较广泛的人工神经网络,其中BP(Back Propagation network,简称BP网络)学习算法是最著名的多层前向反馈式神经网络训练算法之一。该算法在图像处理和图像识别领域已经取得令人瞩目的成就,其主要思想是利用已知确定结果的样本模式对网络进行训练,然后利用训练好的网络进行图像的处理或识别。本文将讨论用MATLAB实现BP神经网络对人脸角度的分析。-Multilayer feedforward neural network feedback is us
-
-
2下载:
通过CNN计算大气散射模型中的传播率,从而实现图像去雾-multi-scale deep neural network for single-image dehazing
by learning the mapping between hazy images and their corresponding
transmission maps
-
-
0下载:
提出一种新的显着性检测方法,通过将区域级显着性估计和像素级显着性预测与CNN(表示为CRPSD)相结合。对于像素级显着性预测,通过修改VGGNet体系结构来执行完全卷积神经网络(称为像素级CNN)以执行多尺度特征学习,基于该学习进行图像到图像预测以完成像素级显着性检测。对于区域级显着性估计,首先设计基于自适应超像素的区域生成技术以将图像分割成区域,基于该区域通过使用CNN模型(称为区域级CNN)来估计区域级显着性。通过使用另一CNN(称为融合CNN)融合像素级和区域级显着性以形成nal显着图,并
-
-
0下载:
On neural network control, Much posture, multi-angle, have different light, For time-frequency analysis algorithm.
-