搜索资源列表
PCA-SVD-Scaling.rar
- PCA SVD的区别联系,加入尺度空间的分析,值得一看,The difference between PCA SVD links add scale space analysis, see
CodesaImages
- 用于指纹检测等,利用图像的梯度方向,获得局部主导方向。Principal Component Analysis (PCA),包含有高斯金字塔分层,SVD奇异值分解,内含测试图像-Used for fingerprint detection, etc. Using the gradient direction of image to get local leading direction. Principal Component Analysis (PCA), contains a gaussi
FaceRec
- 最新SVM和PCA的人脸识别系统,详细地给出了用SVM解决问题的一般框架-Latest SVD and PCA Face Recognition System
pcadenoise
- 矩阵 pca或者低秩方法去噪,利用svd分解,实现对图像矩阵的去噪,该方法支持对rgb图像的去噪。使用代码请 文章中表明出处,感谢。 感谢重庆市研究生科研创新项目支持,项目号CYS16183(image denoise by low-rand regularizer or pca method. the low rank is evaluted by svd, and this method is also support for rgb image.)
PCA
- 1、读入图片,根据PGN格式的line 2 确定矩阵的大小为 28*28=784,根据line4 获取. 2、读入图片,根据PGN格式的line 2 确定矩阵的大小为 28*28=784,根据line4 获取。 3、计算平均矩阵。 4、对平均值矩阵进行SVD: 5、平均矩阵进行SVD后的前20个singular vector的输出结果。 6. 将训练集的每一张图片当成一行,形成一个矩阵,然后对矩阵进行PCA分解。 7. 这个矩阵对测试集的每张图片进行降 维,得到的图像。(1, rea
PCA&SVD_Denoising
- 使用PCA和SVD进行数据去噪,利用数据主要的特征向量进行数据恢复和重建(Using PCA and SVD for data denoising)
