搜索资源列表
PCA.rar
- 用主成分分析法提取人脸图像特征的程序,算法理论依据是K-L变换,Principal Component Analysis with face image feature extraction process
FastICA_25
- 独立分量分析的算法,用于分离出独立分量,用于图像降维,特征提取-Independent component analysis algorithms, used to separate out the independent component for the image dimensionality reduction, feature extraction
AMulti-sourceImagFusionAlgorithmUsingICA
- 一种基于ICA的多源图像融合算法为了尽可能 达到这一要求,在分析盲源分离理论的基础上,提出了一种基于独立分量分析(ICA)的图像融合算法。-ICA-based multi-source image fusion algorithm in order to meet this requirement as far as possible, in the analysis of blind source separation based on the theory put forward bas
2DPCA
- 2DPCA 主成分分析法,处理图像压缩,特征提取的m代码-2DPCA principal component analysis, image compression processing, feature extraction of m code
pca
- PCA主成分分析,用于人脸识别,特征提取等-PCA principal component analysis for face recognition, feature extraction, etc.
pp
- 主元分析 (Principal Component Analysis, PCA) 又叫:Karhunen-Loeve变换 (KLT)、Hotelling变换。 假设已经从图象已经缩放为N*M大小。 m幅N*M大小的图象Xi作为n*1列向量看待-PCA (Principal Component Analysis, PCA) also known as: Karhunen-Loeve Transform (KLT), Hotelling transform.
Component-extraction
- Component-extraction.rar实现彩色图像的RGB三分量的提取,并将各个分量图像进行均衡化-Component-extraction.rar to achieve color image of RGB three-component extraction, and the various component images equalization
pca
- PCA代码 主成分分析代码 适合初学人脸识别的朋友学习使用-PCA principal component analysis source code suitable for beginner learning to use face recognition friend
imagefusion
- 图像融合算法,高通滤波法、IHS法、PCA主成分分析、小波融合、小波和IHS结合的融合方法-Image fusion algorithms, high-pass filtering, IHS method, PCA principal component analysis, wavelet fusion, wavelet and IHS fusion method combining
PCA
- PCA主成分分析用于人脸识别,提取特征值特征向量。有ORL人脸库。-PCA principal component analysis for face recognition, extraction Eigenvalue eigenvector. Have ORL face database.
PCA-(ICA)
- 主成分分析程序包,包括主成分分析和独立主成分分析两个程序源代码。-Principal component analysis package, including principal component analysis principal component analysis and independent source code for both procedures.
drtoolbox.tar
- 这是一个MATLAB工具箱包括32个降维程序,主要包括 pca,lda,MDS等十几个程序包,对于图像处理非常具有参考价值- ,This Matlab toolbox implements 32 techniques for dimensionality reduction. These techniques are all available through the COMPUTE_MAPPING function or trhough the GUI. The following techn
KPCA
- 为解决PCA不适合多指标综合分析中非线性主成分分析的问题 ,采用核主成分分析 (kpca)方法 ,对我国不同地区 16种腐乳的品质进行了综合评价。 -PCA is not suitable to address the many indicators of a comprehensive analysis of non-linear principal component analysis of the problem, using Kernel Principal Component An
hhh
- :由于许多传统的去噪方法在强背景噪声情况下提取声音信号的能力变弱甚至失效, 提出 应用独立成分分析( I C A) 方法对声音信号进行特征提取, 并证明了这种 I C A 变换能增强语音和音 乐信号的超高斯性. 在此基础上, 应用 I C A基函数作为滤波器, 通过阈值化的去噪方法对含有强高 斯背景噪声的声音信号进行去噪仿真实验. 结果表明, 本方法明显优于传统的均值滤波和小波去噪 方法, 为强背景噪声下弱信号的检测提供 了新的途径.-: As many of the t
image
- 应用matlab或VC语言编制图像处理软件,软件功能如下: 一、实验类型 1. 读入图像,并对灰度图像或彩色图像进行显示,对彩色图像可以转化为灰度图像;(8学时) 2. 对读入的图像可以实现减小和提高图像分辨率的功能(16学时) 3. 计算灰度图像的直方图并进行显示,讨论不同图像灰度分布的直方图特征(16学时) 4. 对上述图像进行直方图均衡化处理,分析直方图均衡化的处理结果;(16学时) 5. 对给定的彩色图像,显示其R、G、B三分量图像的噪声图像及H、S、I三分量完成
232
- 车牌的定位算法 基于MATLAB开发 对图像处理的初学者很有帮助-a principal component analysis is performed on the random process defined by plate images, which will be the same images used in the database referred
FICA-matlab
- fast fixed-point algorithm -The FastICA package is a free (GPL) MATLAB program that implements the fast fixed-point algorithm for independent component analysis and projection pursuit. It features an easy-to-use graphical user interface, and a comput
bw-Noise-Reduction
- 这个函数获取二进制图像,然后根据图像中标记目标的连接性和每个连接组成的像素数量来判断是否是噪声。 -The function to get the binary image, then image tag target connectivity and the number of pixels of each connected component to determine whether it is noise.
Morphological-threshold-segmentation
- 实现形态学的阈值分割,可得到分割后的阈值图像,形态学图像,L的直方图,最大连通成分提取图像以及最后得出的结果图像。-Achieve morphological thresholding, the threshold obtained after image segmentation, image morphology, L histogram, the largest connected component extraction result image and the final image.
MATLAB程序
- 快速PCA算法,用于快速提取出矩阵的主成分,主成分数量可定。(The fast PCA algorithm is used to extract the principal component of the matrix quickly, and the principal fraction can be determined.)