搜索资源列表
CorrectCarNoImageAndRegnize
- 一种车牌图像校正新方法 【摘要】因摄像机角度而造成的机动车牌图像倾斜会对其后继的字符分割与识别带来不利的影响。本文在分析了车牌倾斜模式的基础上,提出了一种基于最小二乘支持向量机(LS-SVM)的车牌图像倾斜校正新方法。通过LS-SVM线性回归算法求取坐标变换矩阵并对畸变图像进行旋转校正。主要方法:首先,将二值倾斜车牌图像中的像素转换为二维坐标样本,并构造图像数据集 再通过LS-SVM线性回归算法对该数据集进行回归,求取主要参数 最后,再由该参数转换为能反映图像倾斜方向的2维坐标变换矩阵。实验
support-vector-machine
- 本书主要以分类问题(模式识别,判别分析)和回归问题为背景,系统阐述支持向量机和相应的优化算法-This book mainly classification (pattern recognition, discriminant analysis) and regression as the background, the system describes support vector machine and the corresponding optimization
EEG-based-identification-method
- :基于脑电信号的身份识别是通过采集试验者的脑部信号来进行身份认证。对于同一个外部刺激或者主体在思考同一个 事件的时候,不同人的大脑所产生的认知脑电信号不同。选取与运动意识想象有关的电极后,分析不同个体在特定状况下脑 电的个体差异,采用以回归系数、能量谱密度、相同步、线性复杂度多种信号处理结合方法对运动想象脑电信号进行处理来 进行特征提取。组合多元特征向量并运用多层BP 神经网络对不同个体的脑电信号进行分类,并在不同的意识想象及不同数 据长度、不同的波段对试验者进行识别率验证分析。
RBFregression
- 径向基神经网络来实现非线性的函数回归,详细讲解可看<<MATLAB神经网络30个案例分析>>这本书-RBF neural networks to achieve nonlinear regression function, explain in detail to see MATLAB neural network 30 case studies in this book