搜索资源列表
KFDA
- 此实验使用核Fisher鉴别分析(KFDA)方法在ORL人脸数据库上进行人脸识别试验。ORL标准人脸库共包含40人,每人10幅共400幅BMP图像。-This experiment the use of nuclear Fisher discriminant analysis (KFDA) method on ORL face database for face recognition test. Standard ORL face database contains a total of 40
3DFaceRecognitionBasedon3DLBPandKernelDiscriminant
- 二维照片的人脸识别对光照、姿态和化妆等因素很敏感,故提出了一种将三维局部二值模式(3DLBP)和核享,1剐分析(KDA)相结合的三维人脸识剐方法.采用3DLBP描述人脸深度图像的特征,高斯核函数KDA 作为分类器,使用Chi平方统计改进高斯核函数、采用FRGC v2.0中2003春季采集的三维人脸库进行实验.实验结果表明,该 方法在每人2个训练样本时,识别率为91.8%,而PCA和3DLBP的识别率分别为60.4%和78.3%;当每人的训练样本数增至6个时,识别率为98.4%,而PCA和3D
Kernel_Methods_for_Pattern_Analysis.pdf
- 模式识别:核方法,英文版。模式识别类经典外文书籍。PR,ML类必看大作。PDF矢量版。-Kernel Methods for Pattern Analysis
kda-1.0
- 基于KDA的人脸识别首先利用核方法将人脸图像数据集非线性映射到一个高维特征空间中,然后在高维特征空间中利用LDA进行线性特征提取-Face recognition based on first use of nuclear KDA method will face image data set nonlinear mapping to a high dimensional feature space, and then use LDA in high-dimensional feature sp
KCFcpp-master
- kcf 追踪代码,核方法实现,包括HOG算法-Kcf u8FFD u8E2A u4EE3 u7801 uFF0C u6838 u65B9 u6CD5 u5B9E u73B0, u5305 u62ECHOG u7B97 u6CD5