搜索资源列表
第09章 人脸的检测与定位
- 人脸的检测与定位(在预处理部分,采用了特别的增强人脸特征与脸部皮肤之间对比度的方法及局域取阈值二值化方法,改进了预处理的效果。在图像分割部分,实现了经典的分合算法,并且使用成组算法改进了分合的效果。在人脸匹配部分,实现了基于眼睛和嘴的几何模型匹配,并对评价函数的构造进行了研究。)-Face Detection and Location (pretreatment, using a special facial features enhanced facial skin and the contr
072128
- 对由光源颜色变化引起的图像色彩偏差,进行了校正,并在YCbCr颜色空间建立了Cb-Cr色度查找表和亮度信息联合的肤色模型,应用预处理技术,去除部分非人脸区域,减少人脸检测的搜索空间,并采用模板匹配方法在人脸候选区域检测人脸.实验表明,该方法能够有效的从复杂环境的彩色图像中检测出左右旋转不超过45°的人脸,且不受人脸表情、尺度和数目的影响,且错误率较低.
AVehicleContourbasedMethodforOcclusion
- 摘要:在交通场景下进行多目标跟踪时,如何正确检测出车辆间的相互遮挡是影响车辆跟踪结果的关键。针对问题,运用投 影理论分析交通场景的三维几何投影特征.用长方体投影轮廓模型对车辆进行建模,重构其乏维投影轮廓,以进行遮挡的检 测和分离。与以往的方法相比,它在估计出的车辆外形轮廓基础t-进行遮挡检测,不需要匹配操作,计算量较小,并能解决 基于匹配的方法无法对付的初始遮挡问题。用实验验证了该算法的有效性。-In multi—object tracking of traf氍c scene。how
hausdorff
- 摘 要: 提出了一种基于改进 Ha u s d o r f f距离的人脸相似度匹配的方法, 该方法首先将人脸划分为脸型、 双眼、 鼻、 嘴等几个特征点 集, 分别计算各部分的改进 Ha u s d o r f f 距离, 然后进行加权计算相似度。利用该方法, 在 A S M( 主动形状模型) 定位人脸的基础上进 行了人脸检索。 实验表明, 利用人脸相似度计算方法对人脸特征库进行搜索, 达到 了较好的效果。同时结合 A S M 自动人脸检测, 本 方法可以全自动完成人脸匹配, 应
89346528ImageEnage
- matlabcontourlet变换结合了不可分离的方向滤波组,具备小波所不能表达的多方向特性,能有效捕获自然图像的边缘轮廓信息。本文分析了图像ontourlet系数的统计特征,并利用广义高斯函数对各子带系数层进行建模。将此模型应用于基于VisTex的自建纹理图像库,采用矩匹配估计法,提取模型参数集,运用K2L -matlab
112
- 对拍摄得到的驾驶员视频帧图像, 使用复合肤色模型检测人脸 通过自适应边缘检测、 图像增强等方法处理得到 特征图像, 经特征区域筛选, 依据人脸先验知识匹配得到最佳人眼对 提取眼部特征向量, 结合 LVQ神经网络进行模式 识别检测眼部状态, 为判断驾驶员是否处于疲劳状态提供判据。-Video shot by the driver of the frame, the use of composite skin model of face detection through adaptive
face_detect
- 基于YCbCr色彩空间的人脸跟踪,根据用户选定的目标的颜色分布特点,从样本图样中建立眼睛肤色模型, 然后根据该模型和待检测的彩色图像进行分割与匹配,从而确定候选区眼睛的位置以及人脸偏转的角度。-YCbCr color space based face tracking.
PeopleDensitydll
- 视频图像的人群密度检测,多种人群密度场景下人群计数算法: 算法功能:建立图像特征和图像人数的数学关系 算法输入:训练样本图像1,2…K 算法输出:模型估计参数 ,参考图像 算法流程:1)对训练样本图像进行分块处理(算法1.1); 2)通过算法1.2,计算训练样本各个对应分块的ALBP特征归一化,再用K-means算法(可使用opencv等算法库实现,不再描述其算法),将图像块分成k(k<K)类,获取k(k<K)个聚类中心,即为参考图像; 3)对分块的图像进行与
FaceRec
- 人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像。最容易的方式是直接利用欧式距离计算测试集的每一幅图像与训练集的每一幅图像的距离,然后选择距离最近的图像作为识别的结果。这种直接计算距离的方式直观,但是有一个非常大的缺陷—计算量太大。如果每幅图像大小为100*100,训练集大小1000,则识别测试集中的一幅图像就需要1000*100*100的计算量,当测试集很大时,识别速度非常缓慢。(Face recognition is a s