搜索资源列表
Release
- 闲时无聊,搭了一个基于深度神经网络的手写数字识别系统。该系统在手写数字数据库mnist测试达到了99.22 的准确率。整个系统基于C++开发,可以很方便的移植到其他平台。 其中手写数字数据库mnist(http://yann.lecun.com/exdb/mnist/),有60000个训练样本数据集和10000个测试用例。它是由Google实验室的Corinna Cortes和纽约大学柯朗研究所的Yann LeCun建立的一个手写数字数据库。同时它是nist数据库的一个子集。
DeepLearnToolbox-master
- 这是关于深度学习的一些很重要的代码 包括基础的深度学习 RBM等,还有用深度学习去训练神经网络-This is about the depth of learning, including some very important code based on the depth of learning RBM, as well as by the depth of learning to train the neural network, etc.
PCANet-master
- PCA-NET的C++代码 一个简单的深度学习网络,用于图像分类,可用于下代神经网络框架-PCA-NET C++ source code
SAE_DBN_CNNToolbox
- 多种深度学习框架,主要包括堆栈稀疏自动编码器,深信度网络,卷积神经网络等。对于灰度图像和高维图像,展现非常强大的学习性能。-A variety of deep learning framework, including automatic stack sparse encoder, is convinced of the network, convolution neural networks. For grayscale images and high-dimensional image, s
tf-pose-estimation-master
- OpenPose人体姿态识别项目是美国卡耐基梅隆大学(CMU)基于卷积神经网络和监督学习并以caffe为框架开发的开源库。可以实现人体动作、面部表情、手指运动等姿态估计。适用于单人和多人,具有极好的鲁棒性。是世界上首个基于深度学习的实时多人二维姿态估计应用,基于它的实例如雨后春笋般涌现。人体姿态估计技术在体育健身、动作采集、3D试衣、舆情监测等领域具有广阔的应用前景,人们更加熟悉的应用就是抖音尬舞机(OpenPost Human Attitude Recognition Project is a
基于深度学习的手写数字体识别
- 基于深度学习的手写数字体识别,以卷积神经网络(CNN)作为网络模型,利用mnist手写数字训练数据集训练手写数字识别模型,搭建手写数字识别系统,并用自己手写的数字照片进行测试。