搜索资源列表
-
0下载:
线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。但是将LDA直接用于人脸识别
会遇到维数问题和“小样本”问题。人们经过研究,通过多种途径解决了这两个问题并实现了基于I,DA的人脸识
别 文章对几种基于LDA的人脸识别方法做了理论上的比较和实验数据的支持,这些方法包括Eigenfaces、Fish—
erfaceS、DLDA、VDLDA及VDFLDA。实验结果表明VDFLDA是其中最好的一种方法。-Low—dimensional feature representat
-
-
0下载:
课程设计源代码,实现功能在文档内有介绍。内含knn、bayes识别及pca、lda进行特征提取多种算法,运行参照readme。-The project source code.The realized function is introduced in the pdf document in the files including knn,bayes classification and pcd,lda feature extraction algorithms.Please read read
-
-
0下载:
Extracting discriminatory features from images is a crucial task for biometric recognition. For this reason, we have developed a new method for the extraction of features from images that we have called local binary linear discriminant
analysis (LB
-
-
0下载:
人脸特征提取LDA特征,Jonathan Huang大师编的降维。-Facial feature extraction LDA dimensionality reduction of features, master series.
-
-
0下载:
基于KDA的人脸识别首先利用核方法将人脸图像数据集非线性映射到一个高维特征空间中,然后在高维特征空间中利用LDA进行线性特征提取-Face recognition based on first use of nuclear KDA method will face image data set nonlinear mapping to a high dimensional feature space, and then use LDA in high-dimensional feature sp
-