搜索资源列表
svm-image
- 有关图像识别方法的实现,采用SVM方法完成图像的识别。-the Image Recognition Methods of using SVM method to complete the image recognition.
ED20061124
- Face Dection based on eye locating by SVM in color image
PCAPSVM
- PCA+SVM,对图像进行降维分类,并在yale库上测试取得比较好的效果-PCA+ SVM, dimensionality reduction of image classification, and yale library to achieve better test results
USPS.rar
- 用于手写体数字识别的USPS样本数据库和将MAT格式的样本数据库转换成二值化图像并以行程编码存储,For handwritten numeral recognition of the USPS database and a sample format of samples MAT database into binary image and the Run-Length Coding storage
gist
- 对图像Gabor特征的提取,一个非常有效的特征,并用SVM对图像进行分类-get the gabor feature of a image,a very effective feature,and use SVM to classify the pictures
CorrectCarNoImageAndRegnize
- 一种车牌图像校正新方法 【摘要】因摄像机角度而造成的机动车牌图像倾斜会对其后继的字符分割与识别带来不利的影响。本文在分析了车牌倾斜模式的基础上,提出了一种基于最小二乘支持向量机(LS-SVM)的车牌图像倾斜校正新方法。通过LS-SVM线性回归算法求取坐标变换矩阵并对畸变图像进行旋转校正。主要方法:首先,将二值倾斜车牌图像中的像素转换为二维坐标样本,并构造图像数据集 再通过LS-SVM线性回归算法对该数据集进行回归,求取主要参数 最后,再由该参数转换为能反映图像倾斜方向的2维坐标变换矩阵。实验
Face-Detection
- 完整的包括皮肤及动作识别的C++人脸检测源代码,涉及的技术有:小波分析,尺度缩减模型(PCA,LDA,ICA),人工神经网络(ANN),支持向量机(SVM),SSE编程,图像处理,直方图均衡,图像滤波,C++编程等。-Complete, including skin and actions identified C++ face detection source code, the technology involved are: wavelet analysis, scaling down m
gabor-pca
- 本程序是先用gabor小波变换对人脸图像处理,然后在用pca进行降维,最后用svm分类器进行多分类分类识别,包扩完整的orl人脸库,需注意的是,svm工具箱是用的libsvm工具箱,运行前先配置好libsvm。版本号:libsvm-mat-2[1].89-3[FarutoUltimate3.0]-This procedure is to use the human face gabor wavelet transform image processing, and then to reduce
Seal-Identification
- 运用H15;I色彩窄间对印章图像颜色特征提取等一系列预处理,研究了多种识 别方法后发现基于纹理特征的印鉴识别方法不但速度快,而且识别率也较高,并且方法简便。通 过将极坐标和傅垦叶变换结合,计算m印签图像纹理的频谱度量,来完成印鉴的特征提取,运用支 持向量机分类器对印鉴进行识别,实验证明,方法具有良好的旋转不变纹理分析性能,提高了识别 率。-It WaS found a fast,simple and a higher seal image(HSI)identification
SVM-Class
- 用于图像中物体的分类,识别等。如进行图像中人、车辆、手势的识别。-using for the classfication of objects in the detected image
svm
- 图像处理模式识别一种分类算法:svm,对于所提取的图像的特征进行训练学习然后分类。-Image processing, pattern recognition of a classification algorithm: SVM trained to learn the characteristics of the extracted image and then classified.
Scene-Classification
- 提供了三类场景“bedroom”、“CALsuburb”、“industrial”的样本特征集以及原始图像,分别用线性分类器、树状分类器、SVM分类器以及AdaBoost分类器对其进行区分。其中AdaBoost分类器有部分内容调用了Vezhnevets Alexander编写的源码-Provides three types of scenes " bedroom" , " CALsuburb" , " industrial" sample fea
Igohd
- 图像梯度方向直方图描述子:,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG) 特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集,然后使 用支持向量机线性SVM 分类器对这些特征集进行训练。-Image gradient orientation histogram descr iptor
PG_BOW_DEMO-master
- 一个用BoW|Pyramid BoW+SVM进行图像分类的Matlab Demo -Image Classification using Bag of Words and Spatial Pyramid BoW
PeopleDensitydll
- 视频图像的人群密度检测,多种人群密度场景下人群计数算法: 算法功能:建立图像特征和图像人数的数学关系 算法输入:训练样本图像1,2…K 算法输出:模型估计参数 ,参考图像 算法流程:1)对训练样本图像进行分块处理(算法1.1); 2)通过算法1.2,计算训练样本各个对应分块的ALBP特征归一化,再用K-means算法(可使用opencv等算法库实现,不再描述其算法),将图像块分成k(k<K)类,获取k(k<K)个聚类中心,即为参考图像; 3)对分块的图像进行与
SvmMNIST
- 通过SVM算法识别MNIST手写数字库,并加入了一些预处理算法,包括数字图像的大小调整归一化等,效果不错。-By SVM algorithm identifies MNIST handwritten digital library and added some preprocessing algorithms, including the size of the digital image adjustment normalized so good results.
siftSVM
- SIFT特征提取和SVM分类相结合进行图像识别,提高识别准确率-SIFT feature extraction and SVM classification combining image recognition, improve recognition accuracy
MAERJIANCE
- 场景图像中文本占据的范围一般都较小,图像中存在着大范围的非文本区域。因此,场景图像文本定位作为一个独立步骤越来越受到重视。这包括从最先的CD和杂志封面文本定位到智能交通系统中的车牌定位、视频中的字幕提取,再到限制条件少,复杂背景下的场景文本定位。与此同时文本定位算法的鲁棒性越来越高,适用的范围也越来越广泛。文本定位的方式一般可以分为三种,基于连通域的、基于学习的和两者结合的方式。基于连通域的流程一般是首先提取候选文本区域,然后采用先验信息滤除部分非文本区域,最后根据候选文本字符间的关系构造文本
hog_svm
- 这文件夹包含了,hog特征提取,多类SVM分类器,数据库,图像识别(This folder contains the hog feature extraction, multi class SVM classifier, database, image recognition)
手势识别
- 通过雷达采集手势数据,产生手势图像,再用SVM识别(Gesture data is acquired by radar, and gesture and image are generated, and then recognized by SVM.)
