搜索资源列表
gacv02
- gacv 名字取自 gabor , adaboost , opencv , 他用了 gabor滤波,AdaBoost (MultiBoost ) 分类器和 opencv 开发库,这是第二个测试版叫 gacv02 。这个程序的第一个测试版 gacv01 可以检测大小有一定变化的目标,但是不能检测平面旋转的目标。gacv02 改进了算法可以处 理目标的大小变化和平面旋转,检测速度也有了提高。 -gacv name from gabor, adaboost, opencv, he u
FaceRecV1.0.tar
- 6410的人脸识别程序,亲测,有opencv库和移植好的QT,不可多得的代码!-6410 face recognition program, the pro-test, opencv library and transplantation good QT interval, rare code!
FaceReco_PCA3
- 这是一个用VC6编写的PCA人脸识别程序,用到了opencv库,库文件一起上传了,可以直接编译。也有相应的训练与测试图像。感觉效果还可以!-This is a PCA face recognition using VC6 written procedures, use the opencv library, library file with the upload, can be directly compiled. Have corresponding training and test im
opencv-slides
- OpenCV简单的测试程序,基于VS2008平台,可编译通过-OpenCV simple test procedure, based on VS2008 platform that can be compiled by
hand_detect
- 一个基于肤色模型的手势检验,手势识别程序,效果不错,基于opencv。-A sign test based on skin color model, gesture recognition process, good results, for opencv
face_JC
- VC++和opencv,实现人脸检测,正确率高,能进行多目标检测。亲测无误。-VC++ and opencv, face detection to achieve the correct rate can detect multiple targets. Pro-test correct.
testface
- 人脸识别测试程序,利用OPENCV例程修改-Face recognition test program, using OPENCV routines modify
plateidentify
- 车牌识别 opencv 1.先打开一幅图片然后按照顺序灰度化、二值化、灰度拉伸、车牌定位、二值化、倾斜校正、字符分割、训练神经网络、识别字符。 2.测试图像存储在当前目录的img下。 3.测试集、训练集、目标向量均存储在img下的文本文件中。-License plate recognition opencv The first open a picture and then follow the order of grayscale, binary, gray stretch,
test
- 小波变换 opencv写的 适合初学者-Wavelet transform written opencv for beginners
face_detect
- 人脸识别程序。基于opencv写的人脸是检测程序。程序会准确辨认出人的脸部,并标记出来。使用IDE时VS2010,opencv版本是3.0.检测结果非常准确。-Face recognition program. Based on opencv face is written testing procedures. The program will accurately identify a person s face, and marked out. When using IDE VS2010,
image_alignment
- 基于opencv的图像拼接代码,在opencv 3.2下测试成功-Based on opencv image stitching code, in opencv 3.2 under the test success
Character_Recognition
- 本程序主要参照论文,《基于OpenCV的脱机手写字符识别技术》实现了,对于手写阿拉伯数字的识别工作。识别工作分为三大步骤:预处理,特征提取,分类识别。预处理过程主要找到图像的ROI部分子图像并进行大小的归一化处理,特征提取将图像转化为特征向量,分类识别采用k-近邻分类方法进行分类处理,最后根据分类结果完成识别工作。 程序采用Microsoft Visual Studio 2010与OpenCV2.4.4在Windows 7-64位旗舰版系统下开发完成。并在Windows xp-32位系统下测试
新建文本文档
- 可以识别条形码利用OpenCV实现了条码方向的检测和条码的校正,内含测试图片(Using OpenCV realized the barcode of direction detection and correction, containing the test images)