搜索资源列表
read-file
- 背景建模,运动目标检测,读视频文件,opencv中的图像处理-Background modeling, moving object detection, reading and video files, opencv Image Processing
motion-tracking-system-
- 本文分析比较了传统运动目标检测的3种主要方法:背景图像差分法、时态差分法和光流法,在此基础上给出了一种背景图像预测算法,大大减少了因为背景变化而产生的目标检测误差。本文基于OpenCV设计出改进的运动目标检测与跟踪算法,实现了运动目标的跟踪,并在VC++编译环境下,利用USB摄像头作为视频采集器,通过观察实验结果可以看出,本文的运动目标检测算法能够正确地检测出视频图像中的运动目标,而且在检测性能上优于普通的自适应背景差分法。 -OpenCV-based motion tracking sys
lunkuo
- 本代码基于opencv2.2,轮廓检测,输入图像,进行边缘检测并将图像区分为背景和目标,二值化,用轮廓把目标区域显示出来,还可得到目标区域内的面积,即目标的大小-The code is based on opencv2.2, contour detection, the input image, edge detection and image area is divided into the background and objectives, the two values, the targ
Optical-Flow
- 图像序列中运动目标检测 用光流法(H-S法)实现的 效果不错 亲测 做这方面的可以参考一下-Moving target detection in image sequences using the optical flow method (HS Code) to achieve the effect of good pro-test to do in this area can refer to what
VCPOpenCVPget-background
- 提取静态场景的背景,用于图像图像目标检测,使用OpenCV平台,请在在vc++环境下运行 -Extract the static scene background for the image image target detection using OpenCV platform, running in vc++ environment
VideoDetect
- 基于OpenCV的简易目标检测跟踪程序,能够实现对每帧视频的连续编号截图,可以实现键盘对视频播放的控制,能对每一视频帧生成包含运动目标区域的前景图像,采用某种策略实现对运动目标的跟踪,并用矩形框+编号将运动目标标出。-A simple target detection program base on OpenCV , which can numbered consecutively for each frame of video screenshots, keyboard control the
find_obj
- 在box_in_scene图片中找到box,即已知图像在目标图像中的定位检测-Found box_in_scene picture box, i.e. a known image in the target image, the location detection
FindMoving
- 由运动目标检测的两种基本方法----帧间差分法和背景差分法,借助于OpenCV技术,在Visual C++ 6.0编程环境下开发了运动目标检测系统。该系统首先对不同途径采集的视频图像序列进行相关的预处理之后,分别采用不同检测算法检测出图像序列中的变化区域,最后用形态学滤波和连通性分析对变化区域进行后处理,从而将视频图像序列中的运动目标比较可靠地检测出来。-The two basic methods of moving target detection---- inter-frame diffe
face_detect
- 基于opencv的人脸检测程序,可将目标图像中人脸用矩形框出来-Based on the opencv face detection process, mark the human face of the target image using a rectangular box
motiondetect
- 基于vc++和opencv能够实现视频图像中的运动目标的检测-Based vc++ and opencv to achieve video images of the moving object detection
cvsurf
- surf算法。opencv编程,可以用于目标特征检测、图像匹配等多方面应用-surf algorithms. opencv programming feature can be used for target detection, image matching, and many other applications
OpenCV
- 基于opencv的use摄像头视频采集程序 1 基于opencv的两个摄像头数据采集 3 能激发你用代码做视频的冲动程序 6 图像反转(就是把黑的变白,白的变黑) 11 图像格式的转换 12 从摄像头或者AVI文件中得到视频流,对视频流进行边缘检测 13 采用Canny算子进行边缘检测 15 角点检测 18 图像的旋转加缩放(效果很拽,用地球做就像谷歌地球似的) 21 Log-Polar极坐标变换 22 对图像进行形态学操作(图像的开闭,腐蚀和膨胀运算)
HOG_OpenCV
- HOG即histogram of oriented gradient, 是用于目标检测的特征描述子,该技术将图像局部出现的方向梯度次数进行计数,该方法和边缘方向直方图、scale-invariant feature transform类似,不同的是hog的计算基于一致空间的密度矩阵来提高准确率。Navneet Dalal and Bill Triggs首先在05年的CVPR中提出HOG,用于静态图像or视频的行人检测。-HOG i.e. histogram of oriented gradien
testOpencv
- 实现了运动目标的检测与跟踪,根据两帧图像的帧差来判断该目标是否在运动-Achieve a moving target detection and tracking, based on frame difference two frames to determine if the target is in motion
detect
- 此程序可适用车联网图像处理中,检测前方车辆中车来位置,画出车牌区域,为后续检测车距提供参考目标-This procedure is applicable vehicle networking image processing to detect the position of the vehicle in front of the car to draw plate area, to provide a reference for subsequent detection of the targ
three-Frame-difference-method
- 基于视频图像的三帧差法,使用相邻且连续的三帧图像进行相关的运算得到运动目标。一般用于运动目标检测。-Based on the video image of three difference method, the use of adjacent and contiguous three images related to the operation to get moving target. Generally used for moving target detection.
OPENCVCSYD
- 里面有很多用opencv打开图像、视频,图像处理、边缘检测、运动目标检测等内容,非常丰富。-There are a lot of open images, video, image processing, edge detection, moving object detection using opencv content, very rich.
OpenCV-Computer-Vision-With-Python
- 本书叙述如何使用Python中的OpenCV库实现视频捕捉、图像处理、目标检测等功能。-This book will show you how to use OpenCV s Python bindings to capture video, manipulate images, and track objects with either a normal webcam or a specialized depth sensor, such as the Microsoft Kinect
KMkeen
- 基于人类视觉将图像分割成若干个有意义的区域是目标检测和模式识别的基础。图像分割属于图像处理中一种重要的图像分析技术。图像分割的基本方法是对灰度图像分割,处理图像的亮度分量,简单快速。本论文介绍了传统的图像分割与K-均值聚类算法分割,然后利用OpenCV函数将其实现,并介绍了OpenCV中图像分割相关的基本函数。-Based on the human visual image is segmented into several meaningful regions is the basis for
OpenCV_OpticalFlow
- 光流法检测目标,对每一帧的图像进行检测,并把结果显示在图像上-Optical flow characteristics