搜索资源列表
-
0下载:
高通滤波器,对图像进行高通滤波。采用opencv,包含二维理想高通滤波,2阶巴特沃思高通滤波,二维高斯高通滤波,增长率为2二维指数高通滤波-High-pass filters, high pass filter the image. Using opencv, including two-dimensional ideal high-pass filter, 2-order Butterworth high pass filter, two-dimensional Gaussian high p
-
-
0下载:
opencv写的同态滤波,高通滤波器采用的是高斯高通滤波器-opencv written by homomorphic filtering, high-pass filter uses Gaussian high-pass filter
-
-
0下载:
opencv 写的频率域滤波包含高斯,理想,巴特沃斯低通滤波,-opencv write the frequency domain filtering includes Gaussian, ideal Butterworth low-pass filter,
-
-
0下载:
opencv 粒子滤波程序,可以对感兴趣的颜色进行跟踪-opencv particle filtering program that can track the color of interest
-
-
0下载:
用OPENCV实现的Canny算子,Sobel算子,Laplace算子,简单不带尺度模糊,简单模糊,中值滤波,高斯滤波,双向滤波滤的示例程序。-OPENCV achieved by Canny operator, Sobel operator, Laplace operator, simple and without dimension fuzzy, simple fuzzy, median filtering, Gaussian filtering, two-way filter filter
-
-
0下载:
this a source code developped with OpenCV and c++, it takes a colored picture in input, turns it channels from 3 to 1 (conversion to grey scalled picture) and applies diffrent filters (gaussian, laplacien,smooth filter...) and shows each result in a
-
-
0下载:
高斯混合滤波建模,基于opencv,用于背景建模,前景检测-Gaussian mixture filter modeling, based on opencv, for background modeling, foreground detection
-
-
0下载:
这是一段利用中值滤波、均值滤波与加权(高斯)滤波算法进行图像去噪的程序,比较基础,供初学者阅读。-This is a median filter, with a weighted mean filter (Gaussian) filtering algorithm for image denoising procedures, more basic, for beginners to read.
-
-
1下载:
该算法基于opencv的自适应高斯滤波,并且使用CUDA(GPU)架构进行算法加速-The algorithm is based opencv adaptive Gaussian filter, and use CUDA (GPU) architecture to accelerate the algorithm
-
-
0下载:
基于opencv实现Recursive_implementation_of_the_Gaussian_filter-Based on opencv achieve Recursive_implementation_of_the_Gaussian_filter
-
-
0下载:
均值滤波器、高斯滤波器、中值滤波器的OpenCV实现-Averaging filter, a Gaussian filter, median filter OpenCV realization
-
-
0下载:
人脸识别:
相关功能:
1.将图像转换为灰度显示
2.应用高斯滤波器去除小的边缘
3.计算与画布边缘
4.修改边缘颜色
5.将Mat转换为Xcode的UIImageView显示(Face recognition:
Related functions:
1. Convert the image to grayscale display
2. Use gaussian filter to remove small edges
3. Calculate the edge of th
-