搜索资源列表
RandomForest
- ID3决策树+随机森林算法生成决策森林,采用投票机制进行决策;有训练数据aaa和测试数据bbb;非常适合机器学习的初学者-The ID3 the+ random forest algorithm to generate decision forests voting mechanism for decision-making training data the the aaa and test data bbb ideal for machine learning beginners
DecisionTreeAndRDF-master
- id3决策树算法和随机森林算法,讲的很清晰,步骤很详细-id3 decision tree algorithms and random forest algorithms, said very clearly, very detailed step
RandomForestaAdaBoost
- 随机森林,决策树以及adaboost分类器的java实现。随机森林和adaboost都基于决策树完成。-Random forests, tree and adaboost classifier java. Random Forest and adaboost are based on the decision tree is complete.
DataMining_5
- java实现的决策树代码和随机森林以及Adaboost,里面有自带的数据集可以测试,结果和书上描述一样,亲测有效-DesicionTree,RandomForest and AdaBoost implemented by java,have been tested by myself.It can help those who want to learn data mining
R
- 本文分别利用逻辑回归、决策树和随机森林三种模型针对员工是否会过早离职问题进行探究,结果显示三种方法预测结果的精确度依次增加,分别为78.59%、96.8%和 99%,并且三种模型均显示员工演满意度是最重要的特征变量。(Predicting employee turnover)
决策树与随机森林
- 给出对决策树与随机森林的认识。主要分析决策树的学习算法:信息增益和ID3、C4.5、CART树,然后给出随机森林。 决策树中,最重要的问题有3个: 1. 特征选择。即选择哪个特征作为某个节点的分类特征; 2. 特征值的选择。即选择好特征后怎么划分子树; 3. 决策树出现过拟合怎么办? 下面分别就以上问题对决策树给出解释。决策树往往是递归的选择最优特征,并根据该特征对训练数据进行分割。(The understanding of decision tree and random
随机森林算法分类、回归
- 随机森林分类器,matlab写的,直接可以运行,不需要该任何东西,详细看readme和案例。-Random Forest classifier, matlab write, direct run, does not require that anything
Classifiers
- 我们需要成百上千的分类器来解决现实世界的分类吗 我们评估179分类17种分类器(判别分析,贝叶斯,神经网络,支持向量机,决策树,基于规则的分类器,升压、装袋、堆放、随机森林和其他合奏,广义线性模型,线性,偏最小二乘法和主成分回归,logistic回归、多项式回归、多元自适应回归样条等方法),实现在WEKA,R(有或没有插入包),C和Matlab,包括所有目前可用的相关分类。(Do-we-Need-Hundreds-of-Classifiers-to-Solve-Real-World-Class
19.决策树与随机森林
- 决策树和随机森林,非常实用的PPT资料,推荐(Decision tree and random forest, very useful PPT data, recommended.)