搜索资源列表
bp2
- 基于梯度下降的BP算法,可以调整学习率可动量因子.-based on the gradient descent algorithm BP, the learning rate can be adjusted momentum factor.
BPgaijin
- 采用动量梯度下降算法训练BP网络,有需要的下哦~-using gradient descent algorithm BP training network, it is necessary to the next, oh ~
BPpredict
- 运用比例共轭梯度动量算法来训练BP网络并对机械振动峰峰值进行预测。-use ratio conjugate gradient algorithm to train the momentum BP also peak of mechanical vibration prediction.
BPnet
- 采用动量梯度下降算法训练 BP 网络。
ANN
- BP神经网络的matlab程序(动量梯度下降算法训练 、贝叶斯正则化算法)-BP neural network matlab program
bpnnet_154
- L-M算法。除了动量法(基于梯度下降的训练算法)外,学习率自适应调整策略是BP算法改进的另一种途径,它利用Levenberg-Marquardt优化方法,从而使得学习时间更短。其缺点是,对于复杂的问题,该方法需要很大的存储空间。 -L-M algorithm. In addition to momentum (based on the gradient descent algorithm for training), learning rate adaptive strategy is to i
bp.example
- 采用动量梯度下降算法训练BP网络,采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络-Gradient descent algorithm using momentum BP network training, using two training methods, namely, LM optimization algorithm (trainlm) and Bayesian regularization algorithm (t
BP_neural_network
- 采用动量梯度下降算法训练BP网络,程序后面有详细注释-Gradient descent algorithm using momentum BP network training, procedures followed have detailed notes
subb
- 利用动量梯度下降算法训练BP网络,得到误差显示图,并最终进行预测-Gradient descent algorithm using momentum BP network training, the error display map, and, ultimately, to predict
ebp1
- matlab动量梯度下降算法 生成一个新的前向神经网络 对BP神经网络进行训练 对BP神经网络进行仿真-Momentum matlab gradient descent algorithm to generate a new feed-forward neural networks trained BP neural network on the BP neural network simulation
dltd
- 采用动量梯度下降算法训练BP网络。在本源码中,训练样本定如下:p=[-1 -2 3 1 -1 1 5 -3] 目标矢量为t=[-1 -1 1 1]-Gradient descent algorithm using momentum BP network training. In this source, the training sample set as follows: p = [-1-2 3 1 -1 1 5-3] target vector for t = [-1-1 1 1]
BP1
- 采用动量梯度下降算法训练 BP 神经网络预测的一个实例分析-Gradient descent algorithm with momentum training BP neural network analysis of an instance of
BP-Iris-classifier
- 使用BP网络实现了对Iris数据的分类,使用了可变学习速率和带动量的梯度下降算法。-Using the BP network realizes the classification of Iris data, the use of the variable learning rate and the amount of gradient descent algorithm driven.
shenjingwangluo
- 神经网络实例 采用动量梯度下降算法训练 BP 网络。-Neural Network Example
matlab
- 采用动量梯度下降算法训练 BP 网络训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为 t = [-1 -1 1 1]-采用动量梯度下降算法训练 BP 网络训练样本定义如下: 输入矢量为 p =[-1-2 3 1 -1 1 5-3] 目标矢量为 t = [-1-1 1 1]
DLBP
- 一种改进的BP算法,基于动量梯度的,非常经典,实际可用-An improved BP algorithm based on the momentum gradient, very classic, the actual available
TRAINGDM-to-train-BP(code)
- 采用动量梯度下降算法训练 BP 网络。 训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为 t = [-1 -1 1 1]-Use TRAINGDM to train BP network.
BP_Differ_Train
- BP神经网络算法用来拟合加噪信号,并以动量梯度下降算法和减少内存的Levenberg-Marquardt算法两种训练方法进行该实例下的性能对比-BP neural network algorithm used to fit the noise signal, and to reduce the momentum gradient algorithm and memory Levenberg-Marquardt algorithm two training methods to compare t
bpNeural-network-instance
- 例1 采用动量梯度下降算法训练 BP 网络。 例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。-Example 1 uses the momentum gradient descent algorithm to train the BP network. Example 2 uses the Bayesian
ADAM
- ADAM (Adaptive Moment Estimation)是另外一种自适应学习率算法,它结合动量梯度 下降法,在不同参数方向上采用不同学习率,保留前几次迭代的梯度,能够很好 的适应于稀疏数据。(ADAM (Adaptive Moment Estimation) is another adaptive learning rate algorithm, which combines momentum gradient. The descent method, which uses di