搜索资源列表
biaoshiyushengcheng
- 实验内容 信号与系统试验报告 自己的作业 1.设有两个信号: 要求x(t)和h(t)采样形成离散序列, 参数选择如下: 采样率Δ=4ms, 频率f=30Hz, a=2f2ln(M), M=2.5 在MATLAB下实现连续信号离散化, 并绘制出离散形式的信号波形。
Application-of-optimized-Elman--
- 对量子粒子群优化(QPSO) 算法进行研究,提出了自适应量子粒子群优化(Adaptive QPSO) 算法,用于优化Elman 神经 网络的参数,改进了Elman 神经网络的泛化能力。利用网络流量时间序列数据进行预测,实验结果表明,采用AQPSO 算法优 化获得的Elman 神经网络模型不但具有较强的泛化能力,而且具有良好的稳定性,在网络流量时间序列数据的预测中具有 一定的实用价值-Quantum-behaved particle swarm optimization (QPSO)
DSP
- 任务: 1) 借助MATLAB画出误差性能曲面和误差性能曲面的等值曲线(参考PPT2.1第17页的两幅图); 2) 写出最陡下降法以及LMS算法的计算公式(取 ); 3) 用MATLAB产生方差为0.05, 均值为0白噪音S(n),并画出某次采样得到的波形(即产生任意一个噪声随机序列); 4) 根据 2)中的公式,并利用 3)中产生的S(n),在 1)中的误差性能曲面的等值曲线上叠加画出采用最陡下降法以及LMS法时H(n)的在叠代过程中的轨迹曲线(参考PPT2.1第17页的右下图