搜索资源列表
hpir10
- 最小二乘曲线拟合算法(用最小二乘法求给定数据点的拟合多项式)-least squares curve fitting algorithm (with the least-squares method for the given data points of polynomial fitting)
curvefit_C_edition
- c语言版的多项式曲线拟合。 用最小二乘法进行曲线拟合. 用p-1 次多项式进行拟合,p<= 10 x,y 的第0个域x[0],y[0],没有用,有效数据从x[1],y[1] 开始 nNodeNum,有效数据节点的个数。 b,为输出的多项式系数,b[i] 为b[i-1]次项。b[0],没有用。 b,有10个元素ok。-c language version of the polynomial curve fitting. Using least-squares met
2x
- 利用最小二乘法进行曲线的拟合,这是用多项式拟合曲线的源码!-using the least-squares method of curve fitting, which is the polynomial curve fitting source!
polyfit
- 曲线拟合程序 多项式相关系数的计算方法(多项式形式1) 多项式相关系数的计算方法(多项式形式2) 最小二乘法曲线拟合 三次样条插值(自然边界条件)-polynomial curve fitting procedures correlation coefficient is calculated (the form of a polynomial) polynomial coefficient of correlation Methods (polynomial form 2
Correlation1
- //=== === === === === === ===== //函数说明 //函数名称:Correlation //函数功能:计算最小二乘法拟合的多项式的相关系数 //使用方法:int M------ 拟合多项式的阶数(已知条件) // double *b--- 拟合曲线的系数,排列顺序为由高阶到低阶(已知条件) // double *x--- 结点x轴数据(已知条件) // double *y--- 结点y轴数据(已知条件) // double
Correlation2
- //=== === === === === === ===== //函数说明 //函数名称:Correlation //函数功能:计算最小二乘法拟合的多项式的相关系数 //使用方法:int M------拟合多项式的项数(已知条件) // double *b---拟合曲线的系数,按升次排列(已知条件) // double *x---结点x轴数据(已知条件) // double *y---结点y轴数据(已知条件) // double *Yg--结点估计值
PolyFitSingle
- //=== === === === === === === = //函数说明 //函数名称:PolyFit //函数功能:最小二乘法曲线拟合 //使用方法:double *x ---- 存放n个数据点的X坐标 // double *y ---- 存放n个数据点的Y坐标 // int n -------- 给定数据点个数 // double *a ---- 返回m-1次拟合多项式的m个系数 // int m -------- 拟合多项式的项数,即拟合多项式的
curve_drawup
- 用最小二乘法来解决曲线拟合问题。程序具有可扩展性,即拟合点与多项式拟合曲线(的次数)都作为程序的输入。-using the method of least squares curve fitting to solve the problem. Procedures can be expanded, that is fitting point polynomial curve fitting with the (number of) procedures are as input.
Curve_fitting_of_algebra_poiynomial_and_least_squa
- 代数多项式曲线拟合与最小二乘法PDF文档
srir
- 最小二乘法——一般多项式拟合曲线,并以x-eexp(-x) 0<=x<=2 ,为例进行拟合-Least square method- general polynomial fitting curve, and x-eexp (-x) 0 < = x < = 2, as an example, fitting
suanfa4
- 最小二乘法的多项式曲线拟合,在数值分析中对误差分析使用的非常多!-equation solver
leastSquares
- 基于VC++的最小二乘法拟合曲线,可以自动生成n次多项式,算法简洁明了。-VC++ based on the least-squares fitting curve, can automatically generate n polynomial, the algorithm clear and concise.
curvefit
- 用最小二乘法进行曲线拟合. 用p-1 次多项式进行拟合,p<= 10 x,y 的第0个域x[0],y[0],没有用,有效数据从x[1],y[1] 开始 nNodeNum,有效数据节点的个数。 b,为输出的多项式系数,b[i] 为b[i-1]次项。b[0],没有用。 b,有10个元素ok-Using least squares curve fitting. With p-1 order polynomial fit, p <= 10 x, y 0 of
yiyuanduo
- 用最小二乘法进行曲线拟合,一次多项式拟合f(x),可稍作改动进行多项式拟合-Using the least square method to curve fitting, a polynomial fitting f (x) can be slightly modified to polynomial fitting
polynomial-fitting
- 基于BCB的最小二乘法进项曲线拟合,最后得出多项式方程,并显示出图形-Method of least squares curve fitting proceeds
正交多项式最小二乘拟合
- 计算给定点列的曲线拟合最小二乘法得到的函数(The function of least square method for curve fitting of fixed point column)
多项式最小二乘拟合与龙贝格积分法
- 通过最小二乘法拟合曲线,并使用龙贝格公式计算积分(By the method of least squares fitting curve, and use the formula to calculate the Romberg integral)
fit_analysis
- 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线。(The least squares polynomial curve fitting, according to the given M point, does not require the curve to pass precisely these points, but rather the approximate curve of the curve y=f (x).)
Language
- 程序实现线性插值、抛物插值、牛顿多项式插值、等距节点插值、最小二乘法的曲线拟合对函数进行近似(The function is approximated by linear interpolation, parabolic interpolation, Newton polynomial interpolation, equidistant node interpolation, and least square curve fitting.)
实验2
- 最小二乘法详细程序实现。曲线拟合。 1.直线型 2.多项式型 3.分数函数型 4.指数函数型 5.对数线性型 6.高斯函数型(The principle of least square method, formula deduction, program realization.)