搜索资源列表
Classifier_min_dist_f
- 最小距离分类器,matlab环境下,可直接调用-Minimum distance classifier, matlab environment, can be directly invoked
facedetection
- PCA、LDA人脸检测,压缩包里实现了PCA、LDA、最小距离分类器,人脸检测!-PCA, LDA face detection, compression bag to achieve the PCA, LDA, minimum distance classifier, face detection!
Classifier_min_Local_Mean_f
- 局部最小距离分类器,性能高于knn分类器,matlab环境下,可直接调用-Local minimum distance classifier, classifier performance than knn, matlab environment, can be called directly
code
- 利用最小距离分类器分类3种尾植物的完整实现代码-Minimum distance classifier using three kinds of classification of plants complete the end of the implementation code
shuzishibie
- 以数字与字母识别系统的基本处理流程为主线,从待识别数据的获取入手,通过预处理、特征的提取与选择,到分类器的设计等部分都进行了较为详尽的分析与研究,MATLAB仿真实验表明;采用最小距离法对所给出的一组数字及字符图片进行不同的分块识别,最终得出分8块识别率为85.71 ;分16块识别率为95.71 ;分20块识别率为95 ;具有较高的识别率。-The basic process flow of the numbers and letters recognition system as the ma
fisher
- Fisher线性鉴别分析已成为特征抽取的最为有效的方法之一 .但是在高维、小样本情况下如何抽取Fisher最优鉴别特征仍是一个困难的、至今没有彻底解决的问题 .文中引入压缩映射和同构映射的思想 ,从理论上巧妙地解决了高维、奇异情况下最优鉴别矢量集的求解问题 ,而且该方法求解最优鉴别矢量集的全过程只需要在一个低维的变换空间内进行 ,这与传统方法相比极大地降低了计算量 .在此理论基础上 ,进一步为高维、小样本情况下的最优鉴别分析方法建立了一个通用的算法框架 ,即先作K L变换 ,再用Fisher鉴别
Mahalanobis
- 马氏距离是一种有效地计算两个样本集之间相似度的算法(数据之间协方差距离),与欧式距离相比,它考虑了各种特征之间的联系。本实验旨在通过给出的样本数据,设计一个最小马氏距离分类器并对测试点进行分类,然后将其与最小欧式距离分类器进行比较,实验得出当协方差矩阵为单位阵时,最小马氏距离分类器将与最小欧式距离分类器等价。-Markov distance is an effective method to compute the similarity between the two samples (data
mashijuli
- 模式分类之最小马氏距离分类器设计,对给出样本点进行分类处理-Minimum Mahalanobis distance classifier design pattern classification, the sample points are given for classification
BP神经网络+最小距离分类器
- BP神经网络算法,贝叶斯-最小距离分类器,可以用于模式识别。(BP neural network algorithm, Bayesian minimum distance classifier, can be used for pattern recognition)
knn
- 模式识别中的k近邻算法,经过测试,运行结果很好。 最小距离分类器 : 它将各类训练样本划分成若干子类,并在 每个子类中确定代表点 。测试样本的类别则以其与这些代表点距离最近作决策。该方法的缺点是所选择的代表点并不一定能很好地代表各类,其后果将使错误率增加。(The k nearest neighbor algorithm in pattern recognition has been tested and the result is very good. Minimum distance c
鸢尾花分类
- 使用四种方法进行鸢尾花分类:最小距离分类器,K 近邻法,感知器,Fisher 准则。(Four methods are used to classify iris: minimum distance classifier, K-nearest neighbor method, perceptron and Fisher criterion.)