搜索资源列表
FLch5RMLeg2
- 用matlab仿真的递推极大似然法辨识程序,可用来进行系统辨识,很好用-simulation using Matlab Recursive maximum likelihood method identification procedures, which can be used for system identification, good use
amethodforidentification
- 递推的极大似然法辨识程序 用递推的极大似然法对系统辨识的参数集 -recurrence of maximum likelihood method recursive identification procedures used by maximum likelihood method of system identification parameter sets
dtdt
- 用递推的极大似然法对系统辨识(递推的极大似然法辨识程序)希望通过站长审核-recursive use of the maximum likelihood method of system identification (recursive maximum likelihood method identification procedures) through head of audit
FLch5RMLeg2
- flch5rmleg2.m递推的极大似然法辨识程序
递推的极大似然法辨识程序
- matlab在系统辨识中的应用此处为递推的极大似然法应用的源代码及运行后结果(包括图像)-Matlab system identification in the application of recursive here Maximum Likelihood of the application's source code and running after the results (including images)
111
- 极大似然法,估算已知结点的位置,求出误差-Maximum likelihood method to estimate the location of known nodes, find the error
dmle
- 递推极大似然法求解系统辨识参数(matlab)-Maximum Likelihood Estimation
solter_filter
- 摘要 本文提出了一种新的基于极大似然法的椒盐噪声滤波算法。在传统BP 算法中引入 了极大似然估计,在训练样本时能够在考虑网络逼近行为的同时对噪声分布进行估计。而且 针对椒盐噪声模型构造了新的鲁棒误差函数,从而使算法本身的抗干扰性增强。实验结果表 明了该算法与传统BP 算法相比具有更好的滤波性能。-Abstract This paper presents a new maximum likelihood method based on impulse noise filter. In
max_likehoodL
- 递推极大似然法求解模型参数,matlab例程 -maximum likehood estimation for the parameter of the modal
system-identification
- 多个辨识算法的GUI编程 包括最小二乘,递推最小二乘,牛顿参数,梯度矫正,极大似然法等。-GUI programming multiple recognition algorithms, including least squares, recursive least squares, Newton' s argument, the gradient correction, the maximum likelihood method.
jidasiran
- 极大似然估计法定位,对于TDOA测距时进行的定位,简单源代码,有锚节点存在的节点自定位-Maximum likelihood estimate for localization
FLch5RMLeg2
- 第五章的递推的极大似然法辨识程序,《系统辨识及其MATLAB仿真》附带的光盘-Chapter V of the recursive maximum likelihood identification procedure, " System Identification and MATLAB simulation" with CD-ROM
jidasiran
- 极大似然法,基于极大似然法的参数估计,matlab程序-Maximum Likelihood
RELS
- 增广最小二乘的递推算法对应的噪声模型为滑动平均噪声,扩充了参数向量和数据向量H(k)的维数,把噪声模型的辨识同时考虑进去。最小二乘法只能获得过程模型的参数估计,而增广最小二乘法同时又能获得噪声模型的参数估计,若噪声模型为平均滑动模型,,则只能用RELS算法才能获得无偏估计。当数据长度较大时,辨识精度低于极大似然法。-Augmented least squares of recursion algorithm corresponding noise model for moving average
nfm_ml
- 阵列对接收的宽带噪声调频信号采用极大似然法测向-For wideband noise frequency modulation signal received by the array,using the maximum likelihood method to estimate the AOA
MIMO_MaximumLikelihood
- 多输入多输出,频域辨识,极大似然法,案例程序-Multiple input multiple output, frequency domain identification, maximum likelihood method
DVB-T-TimingaChannelEstimation
- DVB-T 2k模式定时估计Matlab仿真。重新修改了程序。包括DVB-T信号产生,瑞利多径信道衰减,高斯噪声加入。 定时估计的粗定时用极大似然法,细定时用分散导频。首先确定导频模式,再通过相邻导频相关确定定时偏差。此方法适用于瑞利多径信道,高斯信道,也适用于莱斯多径信道。 信道估计利用DVB-T导频,LS估计,导频位置的时间插值,非导频位置频率插值,非常有效。 该程序经过多次运行无误,不足之处在于变量使用不规范,注释简单,读程序很费劲哈。 其特点是均采用经典算法,简单有效为主,对
WblfitMLE
- 根据样本,通过极大似然法对weibull分布参数进行估计,并画出可靠性函数图形-According to the sample, by maximum likelihood method to estimate the parameters of weibull distribution and reliability function draw graph
System-identification-code
- 系统辨识理论的代码,包括最小二乘法、极大似然法、神经网络辨识算法、梯度算法-System identification theory code, including the method of least squares, maximum likelihood method, neural network identification algorithm, gradient algorithm
code
- 对于单输入单输出的系统(Single input single output,SISO)常采用最小二乘方法辨识系统的参数。最小二乘参数估计是一个经典的方法,概念简明,适应范围广,来源于数理统计的回归分析,它能提供一个在最小方差意义上与实验数据最好拟合的模型,在一些情况下,可得到与极大似然法一样好的统计效果,并能很方便地与其它辨识算法建立关系。在一定条件下,最小二乘法参数估计法有最佳的统计特性,即一致的、无偏的和有效的结果。本代码主要关于使用递推最小二乘辨识方法与增广最小二乘辨识方法辨识模型参数,