搜索资源列表
ELM_kernel
- 基于极限学习机的不平衡数据集分类,性能极好,且速度较快-Based on extreme learning machine for imbalanced data sets classification, excellent performance, and faster
imbanlace_kernel
- 基于径向基核函数的不均衡数据集的极限学习机分类源代码-Based on radial basis function unbalanced datasets Extreme Learning Machine classifier source code
chapter30
- 鸢尾花的极限学习机分类,有程序,有数据,还有一个例子-Iris ultimate learning machine classification, procedures, data, and an example
ClassicalELM
- 通过极限学习机的相关算法,实现数据的预测、回归、分类,从而有利益数据的处理-Processed through the relevant algorithm ELM achieve prediction data, regression, classification, and thus interest data
MATLAB ELM
- 几种改进极限学习机算法,可用于数据分类、故障诊断等(Several improved limit learning algorithm, can be used for data classification, fault diagnosis, etc.)
极限学习机
- 极限学习机分类器,训练函数与预测函数,以及数据实例(Extreme Machine Classifiers, Training and Prediction Functions, and Data Instances)
H-ELM
- 可用作数据分类和拟合,深度极限学习机拥有深度学习的优势和自身计算速度快的优势(It can be used to classify and fit data. The deep extrme learning machine has the advantages of depth learning and fast computing speed.)
KELM
- 可用作数据的拟合和分类。核极限学习机采用了核函数,将数据投射到高维空间分类(It can be used for data fitting and classification. Kernel extreme learning machine uses kernel function to project data onto high-dimensional space.)
ELM分类
- 内含两个数据集---iris_data和classsim,分别为艾瑞斯花和红酒的分类训练数据。分别用这两个数据集对极限学习机(ELM)进行训练,并测试ELM的分类效果。(It contains two data sets, iris_data and classsim, which are classified training data of Iris Flower and Red Wine respectively. The two data sets are used to train t