搜索资源列表
GMM
- 高斯混合模型GMM的C++实现 在高斯混合模型中需要使用概率更新参数的地方,程序中都简化成为了1处理,否则计算一个正态分布的概率还是挺花时间的。但是除了将概率换成1,其他地方还是严格按照公式的,大家可以仔细推导一下,就会看出其中的差异- Gaussian mixture model GMM C++ implementation In the Gaussian mixture model parameters need to use probability to upd
FullBNT-1.0.4
- 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用 GUI 创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or 节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD 类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型 参数学