搜索资源列表
lorenzsystembyinline
- 利用Maltab求解变参数lorenz方程,在非线性动力学和混沌研究中经常遇到类似的问题。本程序也可以求解类似的有变参数的微分方程系统如Chen system, Lv system, Rossler system 等。-use Maltab variational parameters lorenz equation, Nonlinear Dynamics and Chaos often encountered similar problems. The procedures also can
lyapunovexponentfordifferentialsystem
- 计算微分方程系统的Lyapunv exponent,在非线性动力学和有关混沌的研究中非常有用。-calculated differential system Lyapunv exponent, Nonlinear Dynamics and Chaos in the study very useful.
tau
- 互信息法求时间延迟,用于混沌方程的分析,采用matlab编写-mutual information for the time delay for the chaos equation analysis, prepared using Matlab
牛顿法解方程源代码
- 牛顿法解方程之混沌情况,帮助你对牛顿法解方程的领悟,具有非常强的视觉冲击力,美仑美奂,不看将后悔一辈子的!-Newton equation solution chaotic situation and help you right Solving equations of Newton's grasp, with very strong visual impact, attractive, and will not look at a lifetime of regret!
2010-02-05(C-C)
- C-C算法应用关联积分能够同时估计出时间延迟和嵌入维数,是相空间重构的前提。 本程序通过C-C算法计算duffing方程产生的混沌时间序列的时间延迟和嵌入维数。-CC algorithm is used to simultaneously estimate the correlation integral time delay and embedding dimension, is a prerequisite for phase space reconstruction. T
Duffing_Reconstruction
- DUFFING方程的混沌时序相空间重构程序-DUFFING equation phase space reconstruction of chaotic time series procedures
josephson
- 基于Matlab对约瑟夫森结(Josephson Junction)RCSJ模型的交直流I-V特性及非线性混沌现象进行数值模拟。通过计算机数值模拟得到该模型的非线性微分方程数值解,研究了RCSJ模型中各参量对约瑟夫森结的影响,进而简要分析其I-V特性和非线性混沌现象的产生机理,绘制出约瑟夫森结的交直流I-V特性曲线、非线性微分方程的相图及因其高度非线性而引起的通过倍周期分岔和阵发性原理进入混沌状态的分岔图。还给出庞加莱截面及功率谱。-Matlab based on the Josephson j
Duffing_success
- 利用混沌振子检测微弱正弦信号,以duffing系统为例,采用的梯形积分积分求取微分方程-Detection of chaotic oscillator using weak sinusoidal signal to duffing system as an example, using the trapezoidal integration points to strike a differential equation
niudunfenxinghundunVC
- 这是用c++ 用牛顿发解混沌方程的源程序 希望对学习混沌和分形的朋友有帮助-This is c++ using the Newton equation of fat source solution Chaos would like to study chaotic and fractal friends help
FourthordersolvefifthorderCNNequation
- 用四阶经典龙格库塔算法求解5阶细胞神经网络状态方程,得到5路超混沌序列。-With the fourth order classical Runge-Kutta algorithm for 5-order cellular neural network state equation, 5-way super-chaotic sequence are generated.
compute-lyapunov-exponent
- 可以方便的计算混沌系统的李雅普诺诺夫指数,只要改变其动力方程即可。-Chaotic system can easily calculate the lyapunov exponent, as long as you change the power equation
logistic
- 用matlab实现的混沌时间序列,根据logistic方程进行的matlab编码,可以生成混沌时间序列-Implemented with matlab time series, logistic equation based on the matlab code that can generate chaotic time series
洛伦兹gui文件
- 世界上研究?广泛的常?分方程|是Lorenz混沌吸引子。该方程在1963年由M.I.T.数学家和气象学家Edward Lorenz提出,Edward Lorenz的研究兴趣主?在用6体运动模型描述地球空气运动。该文件为洛伦兹吸引子matlab程序以及相关文档说明。(function lorenzgui if ~isequal(get(gcf,'name'),'Lorenz Gui') rhos = [28 99.65 100.5 160 350]; shg clf reset
lorzen(另一个文件凑数)
- 这是可进行混沌方程的xz图像形成的matlab文件(This is the matlab file that can be formed by the XZ image of the chaotic equation)
002
- 非线性动力学、分岔 Matlab 程序实现,绘出系统状态变量随参数变化分岔图,绘图参数对应的系统各周期及混沌状态的时间历程图、相轨迹图、Poincare映射图(Nonlinear dynamics and bifurcation are realized by MATLAB program. The bifurcation diagram of system state variable with parameter variation is drawn. The time history di
杜芬方程解的小程序
- Dufing方程是一种重要的动力系统山,是反映工程物理系统中非线性现象和混沌动力学行为的极其重要的方程式。通过Duffing方程可以探讨铁磁谐振电路中的分岔、拟周期运动、子谐波振荡。而在非线性与混沌系统的研究中,Duffing方程展示了丰富的混沌动力学行为。本文通过对不同情况下的Duffing方程进行分析,利用MATLAB进行仿真,从而对Duffing方程有进一步的了解。(Dufing equation is an important dynamic system mountain, which
FOChS
- 可以模拟大部分分数阶混沌系统的matlab代码,如分数阶Duffing方程,分数阶Lorenz方程等(The matlab code of most fractional order chaotic systems can be simulated, such as fractional Duffing equation, fractional Lorenz equation and so on.)
duffing
- 混沌duffing方程实例,解释较全可做参考(An example of chaotic Duffing equation can be used for reference.)
三阶微分方程的李氏指数算法
- 三维微分方程组的李雅普诺夫指数算法,可画出图像,是研究混沌性质的重要参数,可以将其中的M文件的方程组换为其他的形式