搜索资源列表
PS0-SVR
- :针对发酵过程中生物参数难以实时在线测量的问题,建立了用于生物参数状态预估的 支持向量机软测量模型。考虑到该支持向量回归(SVR)模型的复杂性和冷化特征取决于其三 个参数 ,c, 能否取到最优值,采用粒子群优化(PSO)算法实现对参数 ,c, 的同时寻优。在 此基础上,以饲料用 .甘露聚糖酶为对象,建立了基于PSO—SVR的发酵过程产物浓度状态预估 模型。发酵罐控制结果表明:该模型具有很好的学习精度和泛化能力,可实现对 .甘露聚糖酶 产物浓度的实时在线预估。-In
SVM_Short-term-Load-Forecasting
- 优秀论文及配套源码。首先阐述了负荷预测的应用研究现状,概括了负荷预测的特点及其影响因素,归纳了短期负荷预测的常用方法,并分析了各种方法的优劣;接着介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,
sinc
- 粒子群算法优化极限学习机的参数,实现SINC函数拟合-The particle swarm algorithm to optimize the parameters of the extreme learning machine, realizes the SINC function fitting
PSO-ELM
- PSO-ELM 粒子群算法优化极限学习机(PSO-ELM Particle swarm optimization for extreme learning machine)
基于PCA+PSO-ELM的工程费用估计
- 利用主成分分析法结合粒子群(PSO)优化极限学习机(ELM)进行工程费用估计预测(In this paper, principal component analysis (PCA) combined with particle swarm optimization (PSO) optimization extreme learning machine (ELM) is used to estimate and forecast engineering cost)