搜索资源列表
mybss
- 盲信号分离是当前信号处理研究的热点课题之一,在无线数据通信、医学、语音以及地震信号处理等领域有着广阔的应用前景。基于负熵最大的FastICA算法用于实现盲信号分离。该方法的基本思路是以非高斯信号为研究对象,在独立性假设的前提下,对多路观测信号进行盲源分离。在满足一定的条件下,能够从多路观测信号中,较好地分离出隐含的独立源信号。
fastica
- 用matlab实现的最大化负熵的独立分量分析方法,作了正交化处理,可以同时分离出所有的独立分量(无噪声条件下)-Using matlab to achieve the maximization of the negentropy method of independent component analysis, orthogonal made of processing, can be isolated from all of the independent component (no nois
BSS_Demo4SP_20Mar2k5
- 定点频域ICA,使用高斯函数、负熵最大化来处理语音信号分离问题的演示-FIXED-POINT FREQUENCY DOMAIN ICA with GENERALIZED GAUSSIAN FUNCTION BASED NEGENTROPY APPROXIMATION for SPEECH SIGNAL SEPARATION
ICA
- 基于负熵最大的独立分量分析算法,可以将独立的混合信号分离-Based on the negative entropy of the largest independent component analysis algorithm can be a separate mixed-signal separation
ica
- 基于负熵的ICA算法,独立成分分析;负熵;盲信号分离;固定点-Negative entropy based ICA algorithm, independent component analysis negative entropy blind signal separation fixed point
FastICA_25
- 芬兰人海韦里恩 的基于负熵最大的固定点ICA 文件很长 有详细程序说明 很有参考价值-Finn Haiweilien largest negative entropy-based fixed-point ICA file for a long detailed descr iption of the procedures was useful
BSS
- 盲源分离算法的几篇文章应用 【基于独立分量分析的脑电中眼电伪迹消除】【基于负熵和智能优化的盲源分离方法】【基于小波消噪和盲源分离的信号奇异点检测方法】-Blind source separation algorithm applied 【several articles based on independent component analysis of EEG ocular artifact】 【intelligent optimization based on negative entr
Bss4Speech
- 这是基于负熵方法的音频信号分离的固定点独立分量分析方法的Matlab程序。-This is based on negative entropy method of audio signal separation of fixed-point independent component analysis of the Matlab program.
bss_ydm
- 通过基于负熵和牛顿迭代方法的fastica算法实现了随机产生的非高斯独立成分混合后矩阵的盲源分离-By FastICA and Matlab,implementint BSS.
blind-source-seperation
- 多通道盲源分离(基于极大化非高斯性的负熵算法)源代码-Multi-channel blind source separation (based on the maximization of the negative entropy of non-Gaussian algorithm) source code
ICA
- 使用java实现了FastICA,但是我是将matlab的ICA函数做成了一个jar包,使用的负熵评测高斯性-Using java realize the FastICA, but I will be an ICA matlab functions into a jar, using a Gaussian negative entropy evaluation
ICAFANGZHENG
- 基于负熵的独立成分分析,成功应用与仿真信号的分离-Negative entropy-based independent component analysis, and simulation of the successful application of the separation of the signal
fastICA
- 基于负熵最大化的fastICA,matlab程序。程序中的公式在所附带的pdf文件中都高亮标明-Based on negative entropy maximization fastICA, matlab program. The formula in the program attached pdf file are highlighted marked
ica
- 自己编写的基于负熵的ICA程序,可以多种实现故障信号的故障分离-I have written based on negative entropy ICA program, a variety of fault isolation can achieve fault signal
fastICA
- 独立成分分析程序,fastica,基于负熵的固定点迭代算法,信号由matlab生成-Independent component analysis program, fastica, negative entropy fixed point iterative algorithm based on the signal generated by matlab
ICA-matlab
- ICA算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。一般情况下,所获得的数据都具有相关性,所以通常都要求对数据进行初步的白化或球化处理,因为白化处理可去除各观测信号之间的相关性,从而简化了后续独立分量的提取过程,然后再用基于负熵最大的FastICA算法,即可对图像及信号进行解混。-ICA algorithm research can be divided into iterative estimation meth
negentropy
- 基于负熵的盲源分离算法,可以用于语音的盲分离,提高语音信号质量-Negative entropy algorithm based on blind source separation, can be used to blind separation of speech, improve the quality of voice signal
ccfxmjmu
- 基于负熵最大的独立分量分析,信号处理中的旋转不变子空间法,单径或多径瑞利衰落信道仿真,含噪脉冲信号进行相关检测,ICA(主分量分析)算法和程序。- Based on negative entropy largest independent component analysis, Signal Processing ESPRIT method, Single path or multipath Rayleigh fading channel simulation, Noisy pulse corr
基于负熵的独立成分分析
- 独立成分分析 fastICA算法 负熵(Independent component analysis, fastICA algorithm, negative entropy)
基于负熵的快速定点迭代的ica算法源码
- 基于负熵的快速定点迭代的独立成分分析算法以及测试程序源码,算法收敛速度快,准确度高