搜索资源列表
PCA_LDA.rar
- 《机器学习》课上的作业,PCA和LDA降维,尽管网上很多,但很少注释,另外细节上也没注意。这里有很详细的注释。另外还附上一个Naive贝叶斯分类器,大家可以作比较。附带的图像包是OLR人脸。ReducedDim为想要提取的特征数,不是百分比!," Machine learning" classes on the homework, PCA and LDA dimensionality reduction, even though a lot of online, but f
KPCAEXAMPLE
- 一个很好的核主成分分析matlab程序应用举例。该程序是在前人的核主成分分析程序基础上做了适当的修改产生的,可用于多维数据的降维和压缩处理。-A good kernel principal component analysis matlab application procedures, for example. The program is in the predecessors of Kernel Principal Component Analysis based on the proce
sne
- 一种基于概率的数据降维处理方法:Stochastic Neighbor Embedding-Based on the probability of data dimensionality reduction approach: Stochastic Neighbor Embedding
KLPP
- 核lpp(局部保持映射)的降维方法。跟Xiaofei He的论文配套-Nuclear lpp (partial maintain mapping) methods of dimensionality reduction. Xiaofei He told the paper supporting
lda
- 非线性降维方法 可以应用于高维数据的机器学习-Nonlinear dimensionality reduction methods can be applied to high-dimensional data, machine learning
pca
- 非线性降维方法 可以应用于高维数据的机器学习-Nonlinear dimensionality reduction methods can be applied to high-dimensional data, machine learning
empca
- EMPCA算法的函数代码,附带有训练测试数据集,用于特征降维等方面。-Algorithm EMPCA function code, attached to the test data set there is training for the characteristics of dimensionality reduction and so on.
npe
- 流形学习算法lle的线性化方法,是一种非监督的降维方法,比lle的优势在于可以将新的样本点映射到低维空间。-Lle manifold learning algorithm of the linearization method, is a non-supervised dimensionality reduction method has the advantage of being more than lle can sample the new point is mapped to the