搜索资源列表
dimension
- 代码用于估计关联维数。包括G-P算法(corrint.m),高斯核关联算法(gka.m) 和Judd算法(judd.m)-Correlation dimension estimation code. Algorithms for estimating the correlation dimension using the grassberger-Proccacia approach (corrint.m), the Gaussian-Kernel algorithm (gka.m) and Ju
gkdj
- 以为高斯和密度估计,使用高斯核的非参数密度估计方法,对样本进行概率密度估计,程序中给出了窗宽的估算公式。-That the Gaussian and density estimation, using Gaussian kernel non-parametric density estimation method, the sample probability density estimates, the program gives the formula for bandwidth estim
mainKDEprogramLINEAR
- 核密度估计,用于识别和核密度计算,采用高斯插样。-kernel density evalue.it is used for statistical pattern recognition.
KDE
- 对6个样本点,进行直方图估计核高斯核密度估计-for 6 sample points, histogram estimation and Gauss kernel density estimation
rvptirgi
- 对于初学者具有参考意义,采用热核构造权重,利用贝叶斯原理估计混合logit模型的参数,本程序的性能已经达到较高水平,独立成分分析算法降低原始数据噪声,可以广泛的应用于数据预测及数据分析,欢迎大家下载学习。- For beginners with a reference value, Thermonuclear using weighting factors Bayesian parameter estimation principle mixed logit model, The perform
kde
- 给定样本点,采用高斯核密度估计,求出概率密度分布函数。(It is good to use this method to evaluate pdf)