搜索资源列表
hyplas
- ************************************************************************ * * * * * THIS IS THE H Y P L A S 2.0 README FILE * * ----------------- * * * * HYPLAS is a finite element program for implicit small and large * * strain analisys of hyperelast
FP_growth_1221
- FP-growth 算法,包括了建树和挖掘部分。 代码风格良好,可读性强,运算速度快, accident.dat, 340000条数据,50 支持度,建树和挖掘时间100秒左右,mushroom.dat, 8000条记录,建树和挖掘不超过8秒-FP-growth algorithm, written with c++,(ide is visual c++ 2008). The program is very fast and robust,for data of accide
2008D
- 数学建模2008年D题.该文件是2008年全国研究生数学建模D题的求解软件包。-Mathematical Modeling 2008 D. This document is the solving package of 2008 National Graduate D mathematical modeling problem.
coherencefilter
- Example: A = double(imread( fingerprint.png ))/255 B = coherencefilter(A,4, sigma ,1.5, rho ,5) image(min(max(B,0),1)) axis image [1] Weickert, J. 1996. Anisotropic Diffusion in Image Processing. Ph.D. Thesis, Dept. of Mathemati
PDC
- Apply Ben-Israel and Iyigun s Probabilistic D-Clustering (PDC) algorithm for clustering. This implementation is based on: Adi Ben-Israel and Cem Iyigun, "Probabilistic D-Clustering", Journal of Classification 25:5-26 (2008)
2008-model--title-race
- 2008国赛数模a题关于双目识别照相机的源代码1.m1.m,moni.m,moni2.m,moni3.m,gongqiexian.m为可执行代码,直接运行即得结果(当然必须保证代码即本文件中的图片pictrue.bmp在matlab的当前工作区) 2.执行m1.m时程序会将每个圆的像的边缘点以excel文件保存在D盘,而执行gongqiexian.m需要这些文件-2008 model a number of national title race
gpml-matlab-v3.6-2015-07-07
- 这是一个高斯过程回归和分类工具箱,功能非常齐全,可以为解决高斯过程相关的问题提供很多帮助- GAUSSIAN PROCESS REGRESSION AND CLASSIFICATION Toolbox version 3.6 for GNU Octave 3.2.x and Matlab 7.x Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2015-07-07. 0) HOW
BER-for-BPSK-in-Rayleigh-channel
- Matlab example simulating a BPSK transmission and reception in Rayleigh channel. The scr ipt performs the following (a) Generate random binary sequence of +1’s and -1’s. (b) Multiply the symbols with the channel and then add white Gaussian
sauvola
- The implemented Sauvola method uses integral images for fast computation of the threshold function. The Sauvola method is described in: J. Sauvola and M. Pietikainen, Adaptive document image binarization, Pattern Recognition 33, 2000. - ht