搜索资源列表
ROCandAUC
- 计算ROC曲线和AUC的Matlab程序
SVM
- 用C语言自己编写基于特定训练数据和测试数据的SVM程序,并用AUC对其评估-I have written using C language based on the specific training data and test data of the SVM procedure, and their assessment of AUC
Rocforsvm
- 通过决策值可以绘制出ROC曲线的python程序-This tool which gives the ROC (Receiver Operating Characteristic) curve and AUC (Area Under Curve) by ranking the decision values.
Bayes_EM
- 利用matlab实现的基于EM算法的贝叶斯分类器的源代码,可以用来分类或识别,很值得收藏-Using matlab to achieve EM algorithm based on Bayesian classifier of the source code can be used to classification or identification, it is worthy of collection
svm
- 改进的支持向量机工具,直接输入测试集合训练集,得到训练模型的roc图像和auc值-Improved support vector machine tools, direct input test set training set, obtain training model roc images and auc values
metric
- 系统过滤评价指标 AUC以及top-L-precision 以及汉明距离-AUC and evaluation system filter top-L-precision and the Hamming distance
ROC-and-AUC-analysis
- A good matlab code that analysis the ROC curve and corresponding AUC value to estimate the sensitive and the currectness of the sample estimate. This code is suitable for variable type and function data.
newROC_SVM
- 根据计算的灵敏性特异性,绘制ROC曲线,计算相应的AUC-According to the calculated sensitivity specificity, rendering the ROC curve, calculate the corresponding AUC
OPAUC
- One-Pass AUC 优化的matlab代码。参考文献:Wei Gao, Rong Jin, Shenghou Zhu and Zhi-Hua Zhou. One-Pass AUC Optimzation. In: Proceedings of the 30th International conference on Machine Learning (ICML 13), Atlanta, GA, 2013, JMLR: W&CP 28(3), pp.906-914. -This pa
eval
- auc 评估脚本,python版本,自己写得-auc eval
Svm.tar
- 遗传算法优化支持向量机,并计算AUC值,计算准确率-Genetic algorithm optimization support vector machine, and calculate AUC value
auc_metric
- 计算某个阈值区间上的曲线下的面积(AUC),避免使用单个阈值的问题-calculate the AUC of metric in threshold range
AUC
- 链路预测中十种局部相似性指标,AUC衡量算法的效率-Ten local similarity indices in link prediction, the efficiency of AUC algorithm
Change-Detection-Code
- 遥感影像变化检测经典算法(IR-MAD、MAD、CVA、PCA),另外进行了算法的Demo和精度等计算评价(OA、Kappa、AUC、ROC)-Remote sensing image change detection classical algorithm (IR-MAD, MAD, CVA, PCA), were additionally algorithms and calculation accuracy Demo Assessment (OA, Kappa, AUC, ROC)
code
- 1采用遗传算法对男女生样本数据中的身高,体重,喜欢数学,喜欢文学,喜欢运动,喜欢模式识别共6个特征进行特征选择,并基于所得到的最佳特征采用SVM设计男女生分类器,并计算模型预测性能(包含SE,SP,ACC和AUC )。提示:可以用6位的0/1进行编码,适应度函数可以考虑类似 。-1 genetic algorithm for boys and girls in the sample data of height, weight, like math, like literature, like
code
- 2采用PCA对男女生样本数据中的身高,体重,喜欢数学,喜欢文学,喜欢运动,喜欢模式识别共6个特征进行特征提取(自己设定选取的特征个数),并基于所得到的特征采用SVM设计男女生分类器,并计算模型预测性能(包含SE,SP,ACC和AUC )。-2 using PCA for boys and girls in the sample data height, weight, like math, like literature, like sports, like common pattern rec
code
- 采用SVM设计男女生分类器。采用的特征包含身高、体重、是否喜欢数学、是否喜欢文学、是否喜欢运动共五个特征。要求:采用平台提供的软件包进行分类器的设计以及测试,尝试不同的核函数设计分类器,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算基于平台的软件包)。-Using SVM classifier is designed for boys and girls. Characterized by the use of include height, weight
code
- 采用决策树设计男女生分类器。采用的特征包含身高、体重、是否喜欢数学、是否喜欢文学、是否喜欢运动共五个特征。要求:采用平台提供的软件包进行分类器的设计以及测试,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算基于平台的软件包)。-Decision tree classifier is designed for boys and girls. Characterized by the use of include height, weight, whether
ROC
- 画ROC曲线,并求取相应的pf,pd值,求AUC值的matlab代码(Draw the ROC curve, and solve the PD, PF values)
auc
- 不平衡数据分类评价标准,受试者工作曲线下方面积(Unbalance data classification evaluation standard)