搜索资源列表
DTCWT
- 双树复小波变换具有平移不变性、方向选择性等特点,适合进行图像压缩,优于传统离散小波变换方法。-The DT-CWT is suitable to image compression processing because of its shift invariance and directional selectivity. It is preferable to traditional Discrete Wavelet Transform(DWT).
DT
- 机器学习、数据挖掘中决策树算法的思路与关键代码,对想了解该算法实现步骤的同仁有用!-the key programe of Decision Tree Algorim, and its programing method in detail.
Face-image-classification-method
- 人脸稀疏分类研究,基于DD-DT CWT多字典的人脸特征稀疏分类方法-Face thinning classification, based on DD-DT CWT dictionary feature sparse classification method
Multi-Focus-Medical-Image-Fusion-Using-DT-CWT
- Multi-Focus Medical Image Fusion Using DT_CWT.
dtcwt_toolbox4_3
- 双树复小波(DT-CWT)是传统单小波的推广,该变换具有平移不变性、好的方向选择性和高效的计算效率,因此在图像融合领域较小波更具优势(Double tree complex wavelet (DT-CWT) is a generalization of traditional Dan Xiaobo, which has translation invariance, good direction selectivity and efficient computation efficiency.
dt-cwt
- 能够实现双树复小波包变换,有一段仿真例子可以供大家参考(Realization of dual tree complex wavelet packet transform)