搜索资源列表
ABookAboutStatistics
- 是一本很好的讲解统计理论模式识别知识的书籍。理论深度很深。适合数学专业的学生深入学习。-Are a very good knowledge on the statistical theory of pattern recognition books. Theoretical depth deep. Math for students studying in depth.
THE-EAR-AS-A-BIOMETRIC
- It is more than 10 years since the first tentative experiments in ear biometrics were conducted and it has now reached the “adolescence” of its development towards a mature biometric. Here we present a timely retrospective of the ensuing rese
code_DBM
- 新型神经网络的深度波尔兹曼机DBM学习训练实现MATLAB代码,在模式识别,图像处理等领域具有较好的应用,可供学习者研究借鉴。-new kind of neural network of Deep Boltmann machine,which implemented within matlab code. the network have a promising application in the field of pattern recognition and picture process
Exercise5-Softmax-Regression
- 斯坦福深度学习教程中关于softmax regression的练习代码,源代码中需要补全的地方,全部把代码补完整,把手写体识别的数据库放到路径下,可以直接运行-Stanford deep learning tutorial exercises on softmax regression code, source code need to fill all places, all the full complement of the code, the handwriting recognitio
Exercise6-Self-Taught-Learning
- 斯坦福深度学习教程中关于Self-Taught的练习代码,源代码中需要补全的地方,全部把代码补完整,把手写体识别的数据库放到路径下,可以直接运行-Stanford deep learning tutorial exercises on Self-Taught code, source code need to fill all places, all the full complement of the code, the handwriting recognition into the pat
Exercise7-stacked-autoencoder
- 斯坦福深度学习教程中关于stacked autoencoder的练习代码,源代码中需要补全的地方,全部把代码补完整,把手写体识别的数据库放到路径下,可以直接运行-Stanford deep learning tutorial exercises on stacked autoencoder code, source code need to fill all places, all the full complement of the code, the handwriting recognit
Exercise8-linear-decoder
- 斯坦福深度学习教程中关于linear decoder 的练习代码,源代码中需要补全的地方,全部把代码补完整,把手写体识别的数据库放到路径下,可以直接运行-Stanford deep learning tutorial exercises on linear decoder code, source code need to fill all places, all the full complement of the code, the handwriting recognition into
FaceRecognitionBased-OnDeepLearning
- 本文运用深度神经网络的方法克服姿态变量和图像分辨率的影响,提出了一种多姿态的人脸超分辨识别算法并在实验数据集上获得了良好的性能表现。另外本文利用深度信念网络探索正面人脸图像和侧面人脸图像的映射,方法放松了深度信念网络的输入也输出之间绝对相等,而只是保证其高层含义上的相等。实验表明了使用深度信念网络可以学习到侧面人脸图像到正面人脸图像的一个全局映射,但是丢失了个体细节差异。本文还提出了基于深度网络保持姿态邻域进行姿态分类的方法,在学习过程中,我们保证了同一个姿态下的人脸图像应该与同一姿态下的多张图
BP-Classification
- 基于BP神经网络的模式识别方法,基于简单易懂的特点,同时有助于深刻理解神经网络的学习训练方法。-BP neural network pattern recognition method based on the characteristics of easy to understand, while helping a deep understanding of the neural network learning and training methods.
FaceRecognition-master
- 人脸识别,机器学习方法,cvpr很火的研究领域,本人下载后分享-face recognition deep learning method
Deep-learning-for-recogniztion
- 基于深度学习的视频人脸识别方法,CAJ格式的,请下载CAJ阅览器-Depth study of face recognition method based on video
DeepLearnToolbox_CNN_lzbV2.0
- DeepLearnToolbox_CNN_lzbV2.0 深度学习,卷积神经网络,Matlab工具箱 参考文献: [1] Notes on Convolutional Neural Networks. Jake Bouvrie. 2006 [2] Gradient-Based Learning Applied to Document Recognition. Yann LeCun. 1998 [3] https://github.com/rasmusberg
DeepLearnToolbox_CNN_lzbV3.0
- CNN - 主程序 参考文献: [1] Notes on Convolutional Neural Networks. Jake Bouvrie. 2006 [2] Gradient-Based Learning Applied to Document Recognition. Yann LeCun. 1998 [3] https://github.com/rasmusbergpalm/DeepLearnToolbox 作者:陆振波 电子
detection
- 神经网络 孤立词语 特定人 深度学习 语音识别-Neural network isolated words deep learning particular person voice recognition
NN_tutorial
- 人工神经网络是深度学习的基础,并在图像识别上应用非常多。本代码内容是一个经典的BP网络,S1和S2分别表示中间层和输出层的神经元个数,学习3幅不同类型的图像并输出。-Artificial neural networks are the basis of deep learning and are used in image recognition. The contents of this code is a classic BP network, S1 and S2, respectively
DeepLearning
- 包含神经网络、卷积神经网络、深度信念网络等深度学习程序,该程序可以用于语音识别、分类等处。(Deep learning programs including neural network, convolutional neural network and deep belief network can be used for speech recognition, classification and so on.)
deep-learning-opencv
- opencv3.3以上的版本调用caffe模型提前训练好的模型进行图片识别。(The above version of opencv3.3 calls the Caffe model in advance training model for image recognition.)
stanford-deep-learning-matlab-code
- Stanford 大学的深度学习源代码,可用于模式识别和预测,比较稳定。(Stanford University's deep learning source code can be used for pattern recognition and prediction, and is relatively stable.)
tensorflow-vgg16-train-and-test-master
- vgg深度学习,图像识别,用于图像的分类,在python上运行(vgg deep learning, image recognition, used for image classification, running on Python)
雷达信号分选源码
- 用MATLAB深度学习进行雷达辐射源信号分选识别(Radar emitter signal sorting and recognition with MATLAB deep learning)