搜索资源列表
EM
- EM 算法MATLAB代码,用于数据聚类。-em algorithm which is used in data clustering.
EM-algorithm
- EM算法,是一种无监督的聚类算法,可以实现对数据的处理,对不同数据进行聚类,生成类内相似度最大-EM algorithm is an unsupervised clustering algorithm, the data processing can be achieved on different data clustering, to generate the maximum within-class similarity
Clustering
- duke的tutorial on EM的matlab经典源码,值得一看。-Matlab code for the tutorial on Expectation Maximization,worth a visit.
EMAlgorithm
- 上数据挖掘课的课件,是EM算法的,其中还包括最大似然值,最大似然估计,以及cluster-data mining,EM Algorithm ,Likelihood, Mixture Models and Clustering
tf
- EM聚类算法,Knn分类算法简单C++编程-EM clustering algorithm, Knn classification algorithm is simple C++ programming
20107210374284118
- EM聚类算法的C++实现,高效地进行编码,充分利用系统资源。-EM Clustering Algorithm C++ implementation, efficient encoding, full use of system resources.
em
- 基于EM算法的模型聚类的研究及应用,GMM高斯混合模型-EM-based clustering algorithm and its application model, GMM Gaussian mixture model
em
- 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。 -In the statistical calculations, the maximum expected (EM) algorithm parameter maximum likelihood estimate
em
- EM算法,用于实现数据集的聚类,这个是已经改进了的EM算法通过统计找到中心点再进行迭代。-EM algorithm for clustering data sets, this is the EM algorithm has been improved through the statistics to find the center of the re-iteration.
Em
- 使用k均值算法计算聚类的重心,并用EM算法计算各聚类的参数-Using k-means clustering algorithm to calculate the center of gravity, and using EM algorithm to calculate the parameters of each cluster
EM
- 实现EM算法的MATLAB仿真程序,利用高斯混合模型实现EM聚类算法,并比较估计参数。-EM algorithm to achieve the MATLAB simulation program, using Gaussian Mixture Model EM clustering algorithm, and compare the estimated parameters.
em
- 实现利用高斯分布聚类,即完成em算法,直接在matlab上运行,可以作图直观显示(二维数据)-Achieve Gaussian distribution clustering, complete em algorithm, running directly on matlab, you can visualize mapping (two-dimensional data)
EM
- EM 算法,先K-mean 聚类,然后LGB分裂-EM algorithm, the first K-mean clustering, then LGB split
EM算法
- 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。(In statistical calculation, the expectation maximization (EM) algorithm in probability (probabilistic) maximu
em聚类
- em算法指的是最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(latent variable)的概率参数模型的最大似然估计或极大后验概率估计。(Expectation Maximization Algorithm use for clustering)
EMfc
- 一个EM算法 这是通过高斯混合模型进行聚类的EM算法的实现,使用图形在线表示。(EM algorithm This is an implementation of the EM algorithm for Clustering via Gaussian mixture models, using graphical on-line representation.)
matlab编写的EM聚类算法
- em聚类算法,比较基础的算法,可自行改进(em clustering algorithm, more basic algorithm, self-improvement)
GMM
- 高斯混合聚类的python实现代码,里面有data的demo(Python implementation code of Gauss mixed clustering)
GMM
- 实现了EM算法对高斯混合模型进行聚类,并将聚类结果用图像展示出来,希望对混合模型的朋友有用。(The EM algorithm is implemented to cluster the Gauss mixture model, and the clustering results are displayed with images, hoping to be useful to friends of the mixed models.)
em
- 在统计计算中,最大期望(EM)算法是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。最大期望算法经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。(In statistical computation, the maximum expectation (EM) algorithm is an algorithm to find the maximum likelihood estimation or the maximum