搜索资源列表
KMeansClustering
- k均值聚类的算法,这是通用程序!欢迎借鉴使用-k average value gathers a kind of algorithm, this is the general routine! Welcome to profit from uses
K-均值聚类算法C++编程
- K-均值聚类算法的编程实现。包括逐点聚类和批处理聚类。K-均值聚类的的时间复杂度是n*k*m,其中n为样本数,k为类别数,m为样本维数。这个时间复杂度是相当客观的。因为如果用每秒10亿次的计算机对50个样本采用穷举法分两类,寻找最优,列举一遍约66.7天,分成3类,则要约3500万年。针对算法局部最优的缺点,本人正在编制模拟退火程序进行改进。希望及早奉给大家,倾听高手教诲。-K-means clustering algorithm programming. Point by point, inc
K均值聚类
- 对图像进行K均值聚类的程序
基于matlab的K均值聚类程序
- 基于matlab的K均值聚类程序。其中用IRIS数据进行验证,得到了很好的结果。文件中包含了演示后的结果图,Matlab-based K-means clustering procedure. Which use IRIS data verification, have had good results. File contains the results of the demonstration plan
k-rbf
- 程序是基于K均值聚类的RBF代码,很好的一个例子。-K means clustering procedure is based on the RBF code, a good example.
k-mean k均值聚类程序
- k均值聚类程序,虽然matlab中也有自带的,但是这个速度不错。-program for k means used for cluster
Kmeans
- 用vc++很好的实现了K均值聚类算法的研究,这是一完整的用VC++实现的程序,有效地完成了模式识别-Using vc++ achieved a very good K-means clustering algorithm, which is a complete implementation using VC++ program, the efficient completion of the pattern recognition
knn
- k均值聚类+matlab 有详细的注释和图片-failed to translate
proj10-01
- 在试验中编写程序实现了K均值聚类算法,K均值聚类的原理是:在训练样本中找到C个聚类中心,每个聚类中心代表一个类的中心。然后将样本归类到与其最近的聚类中心的那一类。 C的选择是通过先验知识或经验选取的。聚类中心是通过算法迭代求得的。-In the test preparation process to achieve a K means clustering algorithm, K means clustering principle is: in the training samples to
K-MeansClusteringusing
- K均值聚类的一个实例,附上.dat文件和程序以及运行结果,和大家一起讨论,-K means clustering of an example, attached. Dat files and programs, and operating results, and we can discuss, Oh
K-means
- K-均值聚类算法程序,数据挖掘中比较经典的一种聚类算法-K-means clustering algorithm procedures
K
- K 均值聚类程序,可以进行K均值聚类,是模式识别的一个重要算法-K-means clustering procedure, the K-means clustering is an important pattern recognition algorithm
Matlab-image-K-means-
- 基于matlab的图像K均值聚类算法程序-Matlab image K-means clustering algorithm
K-means
- K均值聚类的例子程序,程序中有附带的数据-examples of k-means technology
K_mean_julei
- 这是一个用k均值聚类的matlab 程序 程序对高维数据利用k均值进行了聚类-This is a k-means clustering matlab program procedures for high-dimensional data for the use of k-means clustering
RBF-k均值聚类
- RBF(径向基神经网络)网络是一种重要的神经网络,RBF网络的训练分为两步,第一步是通过聚类算法得到初始的权值,第二步是根据训练数据训练网络的权值。RBF权值的初始聚类方法较为复杂,比较简单的有K均值聚类,复杂的有遗传聚类,蚁群聚类等,这个RBF网络的程序是基于K均值聚类的RBF代码。(RBF (radial basis function network) is an important neural network. The training of RBF network is divided
Kmeans
- 可以实现K均值聚类的MATLAB程序。但是有点小问题。(The MATLAB program of K mean clustering can be realized.)
k-means-for-iris
- 利用K均值聚类对鸢尾花样本进行聚类的matlab程序,包含源代码、样本数据、聚类结果(The matlab program of clustering iris samples by K-means clustering, including source code, sample data and clustering results)
聚类分析程序
- 包含了各类聚类分析程序。主要包括系统聚类,基于欧氏距离的聚类,变量系统聚类和K均值聚类(It includes all kinds of cluster analysis programs. It mainly includes system clustering, Euclidean distance based clustering, variable system clustering and K-means clustering)
k均值聚类
- 通过比较自编MATLAB 的k-means 算法程序和SPSS 中自带的k-means聚类工具,对两个数据集聚类,并分析了聚类结果。(By comparing the k-means algorithm program of self-compiled MATLAB with the K-means clustering tool of SPSS, two data sets are clustered and the clustering results are analyzed.)