搜索资源列表
kpca081223
- 非线性降维方法KPCA 可以应用于高维数据的机器学习-KPCA nonlinear dimensionality reduction methods can be applied to high-dimensional data, machine learning
drtoolbox
- 降维工具箱,包含主元分析(PCA),核主元分析(KPCA)等。-Dimensionality reduction kit, including principal component analysis (PCA), Kernel Principal Component Analysis (KPCA) and so on.
kpca
- KPCA降维算法的实现函数,matlab的函数-KPCA dimensionality reduction algorithm to achieve the function, matlab function
KLPP
- 核lpp(局部保持映射)的降维方法。跟Xiaofei He的论文配套-Nuclear lpp (partial maintain mapping) methods of dimensionality reduction. Xiaofei He told the paper supporting
KPCA
- KPCA主要在图像去噪声方面有应用。此外还可以进行特征提取,降维使用.-KPCA major noise in the image to have the application. You can also feature extraction using dimension reduction.
KPCA-LEG
- 从理论上证明了KGE框架内的各种核算法其实质是KPCA+LGE框架内的线性降维算法,并且基于所给出的理论框架提出了一种综合利用零空间和非零空间 鉴别信息的组合方法.-Theoretically proved that the KGE various accounting method within the framework of its essence is the KPCA+ LGE within the framework of linear dimensionality reduc
kpca
- 核主分量分析matlab程序.对train进行基于高斯径向基kpca降维,x行数目为样本数,列数目为特征数,并用test进行测试-program for KPCA in matlab.
kpca
- 核主元分析程序,基于主元分析进行开发编写,可实现核空间数据降维-KPCA program developed to prepare based on principal component analysis, nuclear spatial data dimensionality reduction
特征降维
- 各种降维的方法,KPCA,KLDA,KLPP,应有尽有
KPCA
- KPCA 核主成分分析 降维处理 与传统的PCA相比,KPCA具有主成份特征明显,贡献率集中,主成份参数维数较少等优点,其性能明显高于PCA的分析结果-Nuclear dimension principal component analysis (KPCA Compared with the traditional PCA, KPCA with principal component characteristics significantly, contribution, princip
KPCA-ELM
- 基于Stprtool 工具箱进行KPCA降维,然后运行ELMS算法。-Stprtool calculation based on KPCA and then ELM algorithm prediction.
kpca
- kpca降维算法,可用于高维数据的预处理,里面有详尽的注释-kpca u964D u7EF4 u7B97 u6CD5 uFF0C u53EF u7528 u4E8E u9AD8 u7EF4 u6570 u636E u7684 u9884 u5904 u7406 uFF0C u91CC u9762 u6709 u8BE6 u5C3D u7684 u6CE8 u91CA
kpca
- 在matlab上面通过kpca,实现大数据降维算法(Dimensionality reduction algorithm for large data)
kpca1
- 作为多元数据的降维处理方法,有效减小数据的运算量。(As a dimension reduction method for multivariate data, the computation of data is effectively reduced.)
KPCA
- 核主成分分析方法,过程非常详细,可用于分类和降维(The kernel principal component analysis method is very detailed and can be used for classification and dimensionality reduction)
kpca
- 实现数据语音数据的降维,去除冗余 提高预测的精度(To reduce the dimension of data speech data, to eliminate redundancy and improve the prediction accuracy)
KPCA
- KPCA算法属于非线性高维数据集降维,算法其实很简单,数据在低维度空间不是线性可分的,但是在高维度空间就可以变成线性可分的了(The KPCA algorithm belongs to the nonlinear high-dimensional data set dimension reduction. The algorithm is very simple. The data is not linearly separable in the low-dimensional space, b
KPCA-故障检测
- 内附有对应的数据集,直接测试即可。利用KPCA进行降维。(With data sets, direct testing is enough.)
LLTSA降维
- 这个是KPCA核主成分分析的代码,好用,里面也带有范例(This is the KPCA kernel principal component analysis code, which is easy to use and also contains examples.)
核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用
- 主要功能有: (1)训练数据和测试数据的非线性主元提取(降维、特征提取) (2)SPE和T2统计量及其控制限的计算 (3)故障检测 KPCA的建模过程(故障检测): (1)获取训练数据(工业过程数据需要进行标准化处理) (2)计算核矩阵 (3)核矩阵中心化 (4)特征值分解 (5)特征向量的标准化处理 (6)主元个数的选取 (7)计算非线性主成分(即降维结果或者特征提取结果) (8)SPE和T2统计量的控制限计算