搜索资源列表
-
0下载:
This package includes two approaches to multi-class cost-sensitive learning, that is, mcKLR and mckNN. The descr iption of mcKLR can be found in our TPAMI paper and CVPR'08 paper; the descr iption of mckNN can be found in our TPAMI paper. Both approa
-
-
3下载:
多种多任务学习算法的工具箱 有代码有使用手册 matlab版-the toolbox of multi-task learning algorithms (matlab version)
-
-
0下载:
Duchi and Singer [24] proposed a boosting method for multi-class classification problems
by utilizing the structural sparsity of model parameters. They claimed that the
method can be generalized for multi-task learning.
-
-
0下载:
论文 Least Squares Loss for Multi-class (task) Learning via the sparse group Lasso penalty 的算法源代码,是sparse+l1+lq,1的稀疏属性选择算法。- Least Squares Loss for Multi-class (task) Learning
via the sparse group Lasso penalty
Problem
-
-
0下载:
Fast R-CNN是在R-CNN的基础上进行的改进,大致框架是一致的。总体而言,Fast R-CNN相对于R-CNN而言,主要提出了三个改进策略:
1. 提出了RoIPooling,避免了对提取的region proposals进行缩放到224x224,然后经过pre-trained CNN进行检测的步骤,加速了整个网络的learning与inference过程,这个是巨大的改进,并且RoIPooling是可导的,因此使得整个网络可以实现end-to-end learning,这个可以认为是
-