搜索资源列表
peEllip5
- 本程序是用五点差分格式解拉普拉斯方程,采用MATLAB作为开发环境,拉普拉斯方程有广泛的应用,五点差分格式的精度高 -This procedure is a five-point difference scheme for solution of Laplace equation, using MATLAB as a development environment, Laplace equation has a wide range of applications, a five-
fct.tar
- FCT-通量修正输运,一种高精度数值计算格式,在CFD中应用广泛。这里给出的对于一维标量守恒方程的C语言程序,是该格式入门的绝好资料。-FCT-flux corrected transportation, is a a high order numerical scheme, which is wiedly usd in CFD field. Enclosed herewith is a C vesion for 1D scalar equation, and hope to be helpfu
eno
- 数值计算有限差分,精度较高的三阶eno格式-numerical simulation,finite difference method,three order eno-scheme
finitvolummethod
- 有限体积法及其在边值问题中的应用本文介绍了极小位能原理、虚功原理和Ritz-Galerkin方法.主要讨论了椭圆型方程定解问题的有限体积法和双曲型方程定解问题的有限体积法,简要说明了椭圆型方程定解问题的有限体积法的收敛性和近似解误差估计.另外,针对矩形域上一个泊松方程的具体定解问题,导出了它的一种特殊有限体积格式,并且编程实现,计算出该泊松方程定解问题的数值解,将算出的数值解与问题的精确解进行了简单比较,得到了初步的结论.在具体例子中用的是一种特殊的有限体积格式,它可以化为五点差分格式,它比较简
Newmark_koohi
- This m.file is intended to perform the numerical integration of a structural system subjected to an external dynamic excitation. The integration scheme utilized for this alysis is the newmark alpha-beta method.
wilson_koohi
- This m.file is intended to perform the numerical integration of a structural system subjected to an external dynamic excitation. The integration scheme utilized for this analysis is the newmark alpha-beta method.
collocation_Newmark_wilson
- This m.file is intended to perform the numerical integration of a structural system subjected to an external dynamic excitation. The integration scheme utilized for this analysis is the newmark-wilson alpha-beta-theta method(collocation method).
NonlinearAdvectionSI
- 用于解算一维非线性平流扩散方程的半隐式差分格式算法-Computing the numerical solution of nonlinear advection equation via a semi-implicit scheme.
Five-pointdifferenceschemewithellipticequationssol
- 用五点差分格式解椭圆型方程,微分方程数值解大作业-Five-point difference scheme with the solution equation, numerical solution of differential equations large operations
ssor
- 数值求解正方形域上的Poisson方程边值问题,用由椭圆型第一边值问题的五点差分格式,用Gauss-Seidel迭代法、块Gauss-seidel迭代法、SSOR迭代法编写求解线性方程组Au=f的算法程序-Numerical Solution of the Poisson equation on a square domain boundary value problem, with the first boundary value problem by the oval five-point
1Dnumerical-reservoir-simulation
- 油藏一维一相数值模拟,使用不同方法进行比较有,显式差分格式,隐式差分格式,及精确解的比较-One phase of one-dimensional numerical reservoir simulation, using different methods compared, explicit difference scheme, implicit difference scheme, and the comparison of exact solution
NA
- 数值计算书籍,算法及程序的matalb实现,很实用。-Numerical analysis and matlab programming, all the basic numerical scheme included.
A-solver-for-1-D-RIEMANN-problem
- 分别采用Roe格式和AUSM格式求解一维黎曼问题,并将计算结果与解析解进行比较,发现这两种计算格式都能获得高的计算精度。-Roe scheme were used in this procedure and AUSM format to solve a 1-D RIEMANN problem, and numerical results were compared with the analytical solution, the results can be seen from these t
2d-heat-conduction
- Numerical solution of steady heat conduction in a rectangular domain (L*H) Using Gauss-Seidel Finite Difference scheme.
Burgers_Harten
- Burgers方程的Harten格式数值解,是一种高精度的TVD格式-Harten format numerical solution for Burgers equation, is an accurate TVD scheme with high resolution
1DFD_DVS
- 利用位移-速度-应力交错网格有限差分方法进行一维粘弹性介质地震波场生成和模拟,对于做波场模拟的同学有很好的参考价值,更详细的介绍见英文描述。-The Fortran95 Computer Code for Finite-Difference Numerical Generation and Simulation of a 1D Seismic Wavefield in a 1D Heterogeneous Viscoelastic Medium Using the Displacement-Ve
wudianchafen
- 用显式差分格式计算双曲线方程初边值问题的解,用显式差分格式求数值解-Explicit Difference Schemes for computing the solution of initial boundary value problem in hyperbolic equations, numerical solution Explicit Difference Scheme
IsothermalGravityCurrentSolver
- 线性化方法应用于非线性的DI的延髓方程粘性重力流等温派生NITE DI erence数值方法。数值方法可以采用相似的解决方案进行验证。-The linearisation method is applied to the nonlinear diusion equation governing the isothermal of viscous gravity currents to derive a nite dierence numerical scheme. The numerica
normal.tar
- Numerical scheme for 1D normal premixed combustion based on Godunov scheme
Burger_high-scheme
- 高精度数值求解格式,用于数值求解椭圆形方程过程,减小误差-High-precision numerical solution scheme for the numerical solution process elliptical equation, reduce errors