搜索资源列表
linectrlOK5512Iinv
- 一个非线性制实例,采用ANN-PID实现一非线性系统控制-An example of nonlinear system was controled by software ANN-PID with using the matlab program
ANN-pid
- 基于BP神经网络的pid控制的源代码注释-the source code comments on BP based PID Control
ANN
- matlab开发的RBF、BP PID算法,已经过测试-matlab development of RBF, BP PID algorithm has been tested
Neural_Control
- 首先介绍人工神经网络的基本概念和ANN 的特性,以及神经网络的学习方法。然后讲授典型的前向神经网络、反馈神经网络的原理、结构、基本算法,给出了BP 网络的算法改进。最后介绍了神经网络PID 控制。-First introduces the basic concepts of artificial neural networks and the characteristics of ANN, and the neural network learning. And then teach the t
ANN-to-control-the-algorithm
- 基于BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。-BP neural network based PID control, self-learning neural network, nonlinear and non-dependent model and other characteristics to achieve PID parameters on-line self-tuning, full us
pid
- 人工神经网络(Artificial Neural Network)是从生理角度对智能的模拟,具有极 高的学习能力和自适应能力,能够以任意精度逼近任意函数,完成对系统的仿真; 而遗传算法是对自然界生物进化过程的模拟,具有极强的全局寻优能力,这两种 算法都是当下研究较多的智能方法。将这两种方法与常规的 PID 控制相结合, 构成智能 PID 控制器,使其具有参数自整定、自适应的能力,以适应复杂环境 下的控制要求,这一思路对提高控制效果具有很好的现实意义。 -Artificia
ann
- 里面包含基于RBF神经网络的PID整定和基于BP神经网络的PID整定-Adaptive PID control based on RBF Identification
Untitled2
- ann The models used in MPC are generally intended to represent the behavior of complex dynamical systems. The additional complexity of the MPC control algorithm is not generally needed to provide adequate control of simple systems, which are ofte