搜索资源列表
-
1下载:
模拟退火算法 模拟退火算法(Simulated Annealing,简称SA算法)是模拟加热熔化的金属的退火过程,来寻找全局最优解的有效方法之一。 模拟退火的基本思想和步骤如下: 设S={s1,s2,…,sn}为所有可能的状态所构成的集合, f:S—R为非负代价函数,即优化问题抽象如下: 寻找s*∈S,使得f(s*)=min f(si) 任意si∈S (1)给定一较高初始温度T,随机产生初始状态S (2)按一定方式,对当前状态作随机扰动,产生一个新的状态S’ S’=S+sign(η).δ 其中δ
-
-
2下载:
以一个简单的例子说明模拟退火算法的思想。 模拟退火法求函数f(x,y) = 5sin(xy) + x^2 + y^2的最小值,对理解模拟退火算法是一个很好的程序示例。-to a simple example illustrates the simulated annealing algorithm thinking. Simulated Annealing for the function f (x, y) = 5sin (xy) x ^ 2 y ^ 2 minimum, the right u
-
-
1下载:
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
-
-
0下载:
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
-
-
0下载:
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
-
-
0下载:
anneal_SimulatedAnnealing.rar用C语言编写,能弥补Matlab中无现成模拟退火算法函数的不足-anneal_SimulatedAnnealing.rar C language, Matlab can make up for the non-existing simulated annealing function of inadequate
-
-
0下载:
这个是SA模拟退火求函数极值用c++编译的程序-the simulated annealing SA is seeking function using extreme procedures c compiler
-
-
0下载:
This demo nstrates the use of the reversible jump MCMC simulated annealing for neural networks. This algorithm enables us to maximise the joint posterior distribution of the network parameters and the number of basis function. It performs a global se
-
-
0下载:
simulated annealing code of dejong function
-
-
1下载:
简洁得模拟退火算法,用来求函数得极值问题,有兴趣得可以看看。里面提出了一个问题,有兴趣得可以做一个实验-concise in simulated annealing algorithm, used to function in extreme demand, are interested they can look at. They raised a question that interested you can do an experiment
-
-
0下载:
利用模拟退火算法快速求得连续函数的最优解,程序简单,算法效率高,精度高,鲁棒性好-Fast simulated annealing algorithm for the optimal solution obtained by a continuous function, the program is simple, efficient algorithm for high accuracy, good robustness
-
-
0下载:
-
-
0下载:
推荐一个实用的Matlab模拟退火工具箱,里面含有非常全的matlab语言模拟退火算法,包括了Matlab函数和6个例程。
-Recommend a practical simulated annealing Matlab toolbox, which contains a very wide of the simulated annealing algorithm matlab language, including the Matlab function and six routines
-
-
0下载:
模拟退火实现的连续函数优化问题。仿真效果良好-Simulated annealing to achieve the continuous function optimization problems. Simulation results
-
-
0下载:
Simulated Annealing (SA) is a smart (meta)-heuristic for Optimization. Given a cost function in a large search space, SA replaces the current solution by a random "nearby" solution. The nearby solution is chosen with a probability that depends on the
-
-
1下载:
用模拟退火算法实现求函数极值问题,c++原码-Simulated annealing algorithm demand function, extremal problem, c++ source
-
-
0下载:
Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global optimum of a given function in a large search space. It is often used whe
-
-
0下载:
模拟退火算法,计算复杂函数极值,可以通过这个函数计算最值,得出最优解-Simulated annealing algorithm, the computational complexity of the function extreme value, you can calculate the value of this function, the optimal solution
-
-
0下载:
using simulated annealing to find optimum of 3D function
-
-
0下载:
BP神经网络,使用模拟退火(simulated annealing)进行优化。c#环境开发。-BP neural network,with simulated annealing function that optimize the convergence rate.
-