搜索资源列表
LMS_filter
- 仿真AR(2)模型的LMS自适应滤波器。 -simulation AR (2) Model LMS adaptive filter.
LMSalgorithm
- 基于MMSE算法的自适应均衡LMS算法仿真,采用AR模型
LMS-FTF-LSL
- 包括:三种LMS算法实现AR(2)的预测,法2、3用递推计算Km,两者区别在于d(n)的取法略微不同;用LSL和FTF算法实现简单的系统辨识。-Include: three LMS algorithm AR (2) the forecast, France 2,3 calculated with recursion Km, whichever is the difference between d (n) of a slightly different取法 LSL and the FTF al
LMS-AR
- 本程序利用自适应LMS算法实现FIR最佳维纳滤波器。可用于观察影响自适应LMS算法收敛性,收敛速度以及失调量的各种因素-This procedure using adaptive LMS algorithm is optimal FIR Wiener filter. Can be used to observe the impact of adaptive LMS algorithm convergence, convergence speed and the amount of imbalan
matlat_for_prediction
- 此文件包含三个MATLAB程序,用于对线性系统AR模型的权向量估计:Kalman滤波估计,RLS和LMS,均为较常用的估计方法,并附有相应的仿真图-There are three programs in this files:kalman,RLS and LMS to pridict the victors of linear systems . These three wawys are common and useful in signal processing
LMS_AR
- Matlab Code for Estimation of AR(1) Process by Using LMS Algorithm.
lms
- 自己编写的AR过程线形预测器的LMS算法-I have written of the AR process of the LMS algorithm linear predictor
signal
- 产生一个随机信号和两个不同频率但频率间隔很小的正弦信号,要求对两信号之和进行如下分析: (1) 求该随机信号的自相关性系数、自相关函数,画出对应的图形; (2) 利用不同的参数建模方法求出两个随机信号的功率谱; (3) 利用极大似然估计、递推最小二乘法等常用的参数估计方法估计所建模型,包括AR模型、MA模型和ARMA模型的的参数,阶次自定;并与Matlab工具箱里的一些建模函数的运算结果进行比较; (4) 利用陷波滤波和MUSIC滤波方法对该信号的频谱进行估计; (5) 利
lms_ar
- 用lms迭代算法求解AR参数模型的权向量及学习曲线的训练-using lms to find out the learning plot
LMS
- 基于一阶AR模型u(n)=0.99u(n-1)+v(n),白噪声方差0.93627.步长0.05.分别使用M=2和M=3抽头的滤波器,用LMS算法实现u(n)的线性预测估计。并附仿真图已被参考。-Based on a first-order AR model u (n) = 0.99u (n-1) the+v (n), the white noise variance 0.93627 step 0.05. Respectively with M = 2 and M = 3-tap filter,
lms_AR_pred
- 使用多维最小均方算法来预测AR过程的信号-use multidimensional LMS algorithm to predict AR process
computerwork_2
- 2. 设 是窄带信号,定义 是在 区间上均匀分布的随机相位。 是寬带信号,它是一个零均值、方差为1的白噪音信号e(n)激励一个线性滤波器而产生,其差分方程为 。 1) 计算 和 各自的自相关函数,并画出其函数图形。根据此选择合适的延时,以实现谱线增强。 2) 产生一个 序列。选择合适的 值。让 通过谱线增强器。画出输出信号 和误差信号e(n)的波形,并分别与 和 比较。 -Computer Experiments: 1. Consider an AR process x
Untitled
- 设有一个随机信号 服从AR(4)过程,它是一宽带过程,参数如下: 我们通过观测方程 来测量该信号, 是方差为1的高斯白噪声,用LMS算法和RLS算法通过观测方程来估计原信号。并用Matlab对此问题进行仿真。 -There is a random signal obedience AR (4) process, which is a broadband process parameters are as follows: We are measured by observing
System-identification
- 用Matlab实现自适应信号处理中的系统辨识,自适应处理器采用自适应线性组合器,未知被控系统采用AR model。用了LMS算法和最速下降法实现。-Realise system identification in adaptive signal processing with matlab.The LMS algorithm and Speedest Descent method are used.
ar-kalman
- LMS、LMS/DFT、LMS/DCT、卡尔曼滤波、AR谱分析和小波变换的程序-Program LMS, LMS/DFT, LMS/DCT, Kalman filtering, AR spectral analysis and wavelet transform
LMS与RLS对比
- 预测信号由二阶AR模型产生,为二阶线性预测滤波器,LMS算法与RLS算法性能对比(The predicted signal is generated by the two order AR model, and is the two order linear prediction filter,performance comparison between LMS algorithm and RLS algorithm)
Least-Mean-Square-LMS-master
- %这是LMS的实现 测试LMS是否正确: 我将估计一个生成的AR函数的重量/系数(% This is an implementation of LMS % To test LMS if it works correctly: % I will estimate the weights/coefficients of a generated AR function)