搜索资源列表
IncrementalRandomNeurons
- 本人编写的incremental 随机神经元网络算法,该算法最大的特点是可以保证approximation特性,而且速度快效果不错,可以作为学术上的比较和分析。目前只适合benchmark的regression问题。 具体效果可参考 G.-B. Huang, L. Chen and C.-K. Siew, “Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hid
benchmark
- benchmark 测试程序代码,用于测试系统性能等指标-benchmark test program code, for testing system performance and other indicators
test
- 某公司收到若干报价,然后报价由低到高进行排序。设最低报价为F,最高报价为G。n=0.2*(G-F) 设A,B,C,D,E五个等距区间并取: A=[F,F+n) B=[F+n,F+2n) C=[F+2n,F+3n) D=[F+3n,F+4n) E=[F+4n,G) 所有的报价都按各自的大小,分别列入上面五个区间。各自区间内的最小报价为该区间的代表报价。如果某区间内没有报价 则以小于该区间的且与该区间相邻的区间内的最高报价代表该区间报价,如果该区间与与之相邻的较小区间内都没有报价则该区间
numerical-calculation
- 某公司收到若干报价,然后报价由低到高进行排序。设最低报价为F,最高报价为G。n=0.2*(G-F)设A,B,C,D,E五个等距区间并取:A=[F,F+n) B=[F+n,F+2n) C=[F+2n,F+3n) D=[F+3n,F+4n) E=[F+4n,G)所有的报价都按各自的大小,分别列入上面五个区间。各自区间内的最小报价为该区间的代表报价。如果某区间内没有报价 则以小于该区间的且与该区间相邻的区间内的最高报价代表该区间报价,如果该区间与与之相邻的较小区间内都没有报价则该区间不参加最后计算。取
demo3_Rohrs
- This the demo file for Rhors counter example: adaptive control for system with unmodeled dynamics, which show the lack of robustness of the traditional MRAC. DoSims.m: This scr ipt initializes the model parameters, run the simulation, and plot
ABC.c
- 人工蜂群ABC算法的VC++源代码,在四个基准目标函数下,经仿真测试可成功运行,对刚接触ABC的初学者很有帮助-ABC VC++ artificial bee colony algorithm source code, in the four benchmark objective function, the simulation tests can be run successfully, very helpful for beginners new to ABC
trackers
- 各种视觉跟踪算法总结,包括matlab和c,c++代码-This code library is for research purpose only. We distribute our library under the GNU-GPL license. If you use this library or the dataset, please cite our paper: [1] Y. Wu, J. Lim, and M.-H. Yang, ¡ °Online Obj
KCF
- This package includes a C++ class with several tracking methods based on the Kernelized Correlation Filter (KCF) [1, 2]. It also includes an executable to interface with the VOT benchmark.
