搜索资源列表
-
2下载:
利用matlab实现彩色图像的分割。算法主要是利用聚类算法。-using Matlab color image segmentation. This algorithm is to use clustering algorithm.
-
-
0下载:
this a code to segment the color texture using Gabor filter. It uses the initial segmentation using kmeans clustering.-this is a code to segment the color texture using Gabor filter. It uses the initial segmentation using kmeans clustering.
-
-
1下载:
将K均值算法用于图像分割,输入的是彩色图像,转换为灰度图像进行分割,输出结果为灰度图像.利用灰度做为特征对每个像素进行聚类,由于光照等原因,有时应该属于一个物体的像素,其灰度值也会有很大的差别,可能导致对该像素的聚类发生错误.在分割结果中,该物体表面会出现一些不同于其它像素的噪声点,因此,算法的最后,对结果进行一次中值滤波,以消除噪声,达到平滑图像的作用-The K means algorithm for image segmentation, the input is a color imag
-
-
0下载:
matlab 彩色图像处理,是采用Kmean聚类法做出的。处理的效果还行-atlab color image processing, clustering method is used Kmean made. Treatment results were line
-
-
1下载:
利用matlab实现彩色图像的分割。算法主要是利用聚类算法-Use of matlab color image segmentation. Algorithm is the main clustering algorithm
-
-
0下载:
Clustering is a way to separate groups of objects. K-means clustering treats each object as having a location in space. It finds partitions such that objects within each cluster are as close to each other as possible, and as far from objects in other
-
-
0下载:
MATLAB code for Adaptive kmeans Clustering for Color and Gray Image.
-
-
0下载:
MATLAB程序,对任意彩色图像,基于K聚类算法的图像分割。-MATLAB program, for any color images, image segmentation based on K clustering algorithm.
-
-
0下载:
In this post, we are going to share with you, the MATLAB implementation of Color Quantization and Color Reduction of images, using intelligent clustering approaches: (a) k-Means Algorithm, (b) Fuzzy c-Means Clustering (FCM), and (c) Self-Organizing M
-
-
1下载:
Color Reduction and Quantization using k-Means, Fuzzy Clustering (FCM), and SOM Neuarl Network in MATLAB
In this post, we are going to share with you, the MATLAB implementation of Color Quantization and Color Reduction of images, using intelligent c
-
-
1下载:
该课题为基于kmeans的聚类分割,输入一张彩色图像,可以选择需要分割成多少类,就会以不同颜色区分不同的块,带有GUI界面,操作丰富。(This topic is based on Clustering Segmentation of kmeans. Input a color image, you can choose how many categories you need to segment, and then different blocks will be distinguished
-