搜索资源列表
-
2下载:
基于决策树的n则交叉验证分类器
(决策树程序直接调用matlab中的)
crossvalidate.m N则交叉验证程序,N可选
NDT.mat 含9个国际公认标准数据集,已做过标么处理,可直接使用
专业-n Based on Decision Tree is cross-validation classification (decision tree directly call the Matlab) cr ossvalidate.m N is cross-validation
-
-
2下载:
LIBSVM 是台湾大学林智仁 (Chih-Jen Lin) 博士等开发设计的一个操作简单、易于使用、快速有效的通用 SVM 软件包,可以解决分类问题(包括 C- SVC 、n - SVC )、回归问题(包括 e - SVR 、 n - SVR )以及分布估计( one-class-SVM )等问题,提供了线性、多项式、径向基和 S 形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。,LIBSVM is林智仁Taiwan Univ
-
-
0下载:
图像分类中的交叉验证方法,比如说,一个训练集集合,为了得到其中参数的较准确值,就可以使用此类算法-Image Classification Based on cross-validation method, for example, a collection of training set, in order to obtain more accurate values of these parameters, you can use these algorithms
-
-
0下载:
Feature Selection using Matlab.
The DEMO includes 5 feature selection algorithms:
• Sequential Forward Selection (SFS)
• Sequential Floating Forward Selection (SFFS)
• Sequential Backward Selection (SBS)
• Se
-
-
0下载:
classification cross validation
-
-
1下载:
是一種線性方成的分類器。SVM透過統計的方式將雜亂的資料以NN的方式分成兩類,以便處理。LIBLINEAR is a linear classifier for data with millions of instances and features. It supports L2-regularized logistic regression (LR), L2-loss linear SVM, and L1-loss linear SVM. -Main features of LIBLINEA
-
-
0下载:
The code implements a probabilstic Neuraol network for classification problems trained with a Leave One Out Cross Validation Scheme in Matlab (version 7 or above). The following toolboxes are required: statidtics, optimization and neural networks.
-
-
1下载:
MATLAB cross-validation tool for classification and regression v0.1
FEATURES:
+ K-fold cross validation.
+ Arbitrary train and prediction functions with parameters can be used.
+ Arbitrary loss function can be used.
+ Wrappers for
-
-
0下载:
训练错误率和交叉验证错误率相等,在样本比较大时,这个结果是可以预期的;训练错误率一般低于测试错误率,但是当样本数据比较少时,实验也出现了意外,样本多的那组测试错误率比样本少的训练错误率还要小;在本实验中,同组数据的交叉验证错误率比独立测试错误率高,这个反常现象是因为样本的原因所致,交叉验证的样本小,而独立测试时所用训练样本数目大,因而出现这种情况。分类线上,fisher准则是一条直线,而贝叶斯分类器实际上是一个类似椭圆的封闭曲线;很明显,贝叶斯分类器比fisher分类器要好。-Training
-
-
0下载:
机器学习大牛Dale Schuurmans写的多类SVMs的快速实现算法,可以自己修改核函数,通过K-fold cross validation训练得到最优参数,分类效果很好-Machine learning large cattle Dale Schuurmans write multi-class SVMs fast algorithm, can modify the kernel function, the optimal parameters through K-fold cross v
-
-
0下载:
对iris数据集分类 采用bp网络 利用交叉验证优化参数-Classification of the iris data set bp network use of cross-validation optimization parameters
-
-
0下载:
Successful classification ratio dynamic over the number of terminal nodes: cross-validation
-
-
0下载:
This a code for doing cross validation in a case of Batik classification-This is a code for doing cross validation in a case of Batik classification
-
-
0下载:
利用Python语言来实现KNN分类,并且实现了交叉验证。-Python language to use KNN classification, and to achieve a cross-validation.
-
-
0下载:
LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式
-
-
0下载:
K近邻分类器,实现了对iris数据集的分类,并且使用了交叉验证的方法,来验证求得的最优的K值。-K-nearest neighbor classifier to achieve the classification of iris data set and cross-validation of the method used to verify the optimal value of K obtained.
-
-
0下载:
通过KNN分类法,根据酒的某些性状信息对酒进行分类。然后,通过交叉验证对分类结果进行测试。最后,对数据进行主成分分析,再进行分类。-By KNN classification, according to certain traits information wine wine classification. Then, through cross-validation of the classification tested. Finally, principal component analy
-
-
0下载:
基于交叉验证的支持向量机算法,程序内可实现选择最佳参数,并对输入数据分类输出-Cross-validation based on support vector machine algorithm, can be realized within the program to the best parameters, and input data classification output
-
-
0下载:
一个用python编写的带交叉验证的SVM分类程序,前提是必须正确安装里面所用到的Python库-Written in python with a cross-validation of SVM classification procedures, must be properly installed inside the premise is used by the Python library
-
-
2下载:
实现PCA分类.1、进行PCA的交叉检验。2、对数据进行PCA降维。3、进行分类,交叉检验。4、构造训练和测试的数据(PCA classification,Cross validation of PCA,PCA dimensionality reduction for data.)
-