搜索资源列表
-
1下载:
对学习深度神经网络很有用的资料,深入浅出地对相关的知识点进行了解析,值得一阅-Very useful for learning neural network, explain profound theories in simple language to analyze the related knowledge points, worth reading
-
-
0下载:
matlab code for Deep Neural Network
-
-
0下载:
深度学习python实现,并附有MNIST上的测试程序,准确率98 以上-Deep learning learns low and high-level features large amounts of unlabeled data, improving classification on different, labeled, datasets. Deep learning can achieve an accuracy of 98 on the MNIST dataset.
-
-
2下载:
MATLAB神经网络经典程序
包括多个神经网络程序、深度学习程序-MATLAB neural network program
including mutil network and deep learning program
-
-
0下载:
很好的深度学习与神经网络教程,适合深度学习的初学者-Good depth and neural network learning tutorial for beginners to learn the depth of
-
-
2下载:
深度神经网络VGG-16模型的keras代码,用于图像识别-keras codes of deep neural network VGG-16 model, used of image classification
-
-
1下载:
深度学习,人工神经网络的模型,逐层学习算法,可以构建多层的-deep learning, artificial neural network model, learning algorithm, can construct a multi-layer
-
-
0下载:
卷积神经网络是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面,一方面它的神经元间的连接是非全连接的, 另一方面同一层中某些神经元之间的连接的权重是共享的(即相同的)。它的非全连接和权值共享的网络结构使之更类似于生物 神经网络,降低了网络模型的复杂度(对于很难学习的深层结构来说,这是非常重要的),减少了权值的数量。-Convolution neural network is a kind of special deep neural network model, its particula
-
-
1下载:
使用tensorflow实现几类深度学习,如卷积神经网络、自回归神经网络、动态神经网络等-Use tensorflow to achieve several kinds of deep learning, such as convolution neural network, recurrent neural network, dynamic neural network
-
-
1下载:
世界顶级杂志《自然》,针对人工智能的深度学习进行的最全面综合论述,以及对未来深度学习及神经网络的发展预测,值得一读!-The world s top magazine nature , for the depth of artificial intelligence to learn the most comprehensive exposition, as well as the future development of deep learning and neural network p
-
-
0下载:
CNN - Convolutional neural network class This project provides matlab class for implementation of convolutional neural networks.
Deep Neural Network It provides deep learning tools of deep belief networks (DBNs).
myCNN is a Matlab implementation
-
-
0下载:
深度学习主要通过人工神经网络的思想发现数据的分布式特征表示-Deep learning discovers the distributed representation through artificial neural network.
-
-
1下载:
GoogleNet 卷积神经网络 图片分类 分类精度高 网络结构深(GoogleNet convolution neural network image classification, high classification accuracy, network structure is deep)
-
-
1下载:
用不同的方法实现了神经网络(没有用第三方库,就是用numpy等实现的,对于初学者来说是不错的深入了解神经网络的素材)(Using different methods to achieve the neural network (not using third square libraries, that is, using numpy and so on, for beginners is a good understanding of the neural network material))
-
-
0下载:
基于tensorflow的简单神经网络代码实现(Implementation of simple neural network code based on tensorflow)
-
-
0下载:
基于tensorflow的mnist数据集卷积神经网络简单代码实现。(MNIST dataset based on tensorflow convolutional neural network simple code implementation)
-
-
0下载:
neural-networks-and-deep-learning-master
-
-
2下载:
Python3.6实现神经网络算法,经过mnist数据集测试后表现良好,准确率约为95%-96%。
/src 为源代码
/data为mnist算集(This is a code samples for "Neural Networks and Deep Learning" using python3.)
-
-
1下载:
非常适合入门的一个深度学习图片分类例程!(Very suitable for beginners to learn a deep picture classification routines!)
-
-
1下载:
深度神经网络训练过程中:首先是进行初始化,根据需求设置神经网络的基本结构;然后进行前向传递(feedforward),层与层之间进行传递,求得误差;然后进行反向传播(back propogation),根据误差最小化原则,使用随机梯度下降法,对各个参数进行求导,确定下降方向,对各个参数进行更新(In the training process of deep neural network, firstly, initialization is carried out, and the basic
-