搜索资源列表
ju
- 一个CURE聚类算法 应用了K中心点算法 采用空间坐标聚集 -a clustering algorithm is applied to the K-center space coordinates is used to gather
MFY_kmeans
- 这是我帮一个本科生做的毕业设计,实现的数据挖掘的k均值和k中心算法,其中包含了我做的两个二维的数据集,感觉要预先知道k的参数值,不是很方便-This is what I do to help an undergraduate graduation Design, Implementation of the Data Mining mean k and k center algorithm, which includes me to do two two-dimensional data sets
KMedios.rar
- 数据挖掘中 K中心点算法 测试数据为iris 数据库采用sql server 聚类算法,Data mining algorithms in test data for the K center iris database using sql server clustering algorithm
k-means
- 基于K-means聚类算法的社团发现方法 先定义了网络中节点关联度,并构建了节点关联度矩阵, 在此基础上给出了一种基于 K-means聚类算法的复杂网络社团发现方法。 以最小关联度原则选取新的聚类中心, 以最大关联度原则进行模式归类,直到所有的节点都划分完为止, 最后根据模块度来确定理想的社团数-K-means clustering algorithm based on the association discovery To define a network node cor
selfAffinity
- AP是在数据点的相似度矩阵的基础上进行聚类.对于规模很大的数据集,AP算法是一种快速、有效的聚类方法,这是其他传统的聚类算法所不能及的,-A semi-supervised clustering method based on affinity propagation (AP) algorithm is proposed in this paper. AP takes as input measures of similarity between pairs of data points. AP
K-meansNB
- :将K—means算法引入到朴素贝叶斯分类研究中,提出一种基于K—means的朴素贝叶斯分类算法。首先用K— me.arks算法对原始数据集中的完整数据子集进行聚类,计算缺失数据子集中的每条记录与 个簇重心之间的相似度,把记 录赋给距离最近的一个簇,并用该簇相应的属性均值来填充记录的缺失值,然后用朴素贝叶斯分类算法对处理后的数据 集进行分类。实验结果表明,与朴素贝叶斯相比,基于K—means思想的朴素贝叶斯算法具有较高的分类准确率。-: K-means algorithm will
k-means
- 用c程序和matlab分别试验一种k-means改进算法,按照方法选取聚类中心点,事实证明,这种改进是有效的。-Matlab with c procedures and were experimenting with an improved k-means algorithm, in accordance with the method of selecting cluster center, the facts show that this improvement is effective.
proj10-01
- 在试验中编写程序实现了K均值聚类算法,K均值聚类的原理是:在训练样本中找到C个聚类中心,每个聚类中心代表一个类的中心。然后将样本归类到与其最近的聚类中心的那一类。 C的选择是通过先验知识或经验选取的。聚类中心是通过算法迭代求得的。-In the test preparation process to achieve a K means clustering algorithm, K means clustering principle is: in the training samples to
k-center
- 这是一个K中心算法的Matlab程序,很多用-This is a Matlab algorithm K center procedures, many with
k-means
- K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。-K-means algorithm is based on the division of the classic clustering method, is ten classic one of data mining algorithm. K-means the
K-means
- 聚类算法(K-means)源代码,通过对该代码的运行,可以实现对各种数据的聚类显示,最终选出聚类中心-Clustering algorithm (K-means) source code, run through the code, can display a variety of data clustering, selected a cluster center
k_means
- K均值聚类,输入聚类前的点集以及阈值,输出最后各个分类的中心点-K-means clustering, the input point set before clustering and threshold, output the final classification of the center of each
K-MEANS
- 均值计算方法源码实现:分群的方法,就改成是一个最佳化的問題,換句话說,我們要如何选取 c 个群聚以及相关的群中心,使得 E 的值为最小。 -Method of calculating the mean source implementation: clustering method, based on the best change is a problem, in other words, how do we choose c a center cluster and related g
kcenters
- K中心聚类算法 ,声明:本源程序由网络搜集整理,不承担技术及版权问题!-K center clustering algorithm, the statement: This source collected by the network, does not bear the technical and copyright issues!
K-MEANS
- 简单的K均值聚类函数,用于求算重心的函数,算法高效快速-Simple K-means clustering function for calculating the center of gravity function, the algorithm is fast and efficient
K-junzhi
- 找中心点,找聚集点 进行分类 是一个交好的程序 应用与计算-Find the center point, find rallying point
k-means-clustering
- 用C语言程序通过先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚类中心会根据聚类中现有的对象被重新计算。-C Programming Language by first randomly selected the K object as initial cluster centers. And then calculate the distan
CH3Clustering
- 基于k-means的聚类编程,例如:随机选取k个中心点,经过计算每个点到k个中心距离的远近,将其归类。最后总的距离平方差最小,即停止。-Programmed based on k-means clustering, for example: randomly select k central point has been calculated for each point to the k center distances, will be classified. The final total
K-means
- K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。(The K-means algorithm is a hard clustering algorithm, which is representative of the prototy
Improved K-means
- 基于数据密度自动计算最佳K聚类中心,对数据进行聚类(The best K clustering center is automatically calculated based on data density to cluster data.)