搜索资源列表
kerneladatron
- kernel adatron, svm impelemtation using gradient ascent method, fast and accurate for solving SVM problem with two classes
kerneladatron
- Kernel adatron, solving svm with gradient ascend method. fast and accurate.
Gauss-SVM
- 基于Gauss 核函数SVM分类机,使用二阶几何方法训练。-Gauss kernel function SVM classification based on machine, using the geometric method of second-order training.
SVregression
- In kernel ridge regression we have seen the final solution was not sparse in the variables ® . We will now formulate a regression method that is sparse, i.e. it has the concept of support vectors that determine the solution. The thing to not
svclassify
- A method for classification of image using svm kernel
KPCA
- 核主成分分析方法,是主成分分析的一种改进算法,是一种非线性的特征提取方法。 -Kernel principal component analysis, is the principal component analysis of an improved algorithm, is a nonlinear feature extraction method.
KPCA
- 在ORL或Yale标准人脸数据库上完成模式识别任务。用PCA与基于核的PCA(KPCA)方法完成人脸图像的重构与识别试验. -Or Yale in the ORL face database, complete the standard pattern recognition tasks. With the PCA and kernel-based PCA (KPCA) method to complete the reconstruction of face image and reco
hidden-space
- 最小二乘隐空间支持向量机 王玲 薄列峰 刘芳 焦李成 ! 在隐空间中采用最小二乘损失函数$提出了 最 小 二 乘 隐 空 间 支 持 向 量 机#0*&**52H 8 同 隐 空 间 支 持 向 量机#&**52H 一样$最小二乘隐空间支持向量机不需 要 核 函 数 满 足 正 定 条 件$从 而 扩 展 了 支 持 向 量 机 核 函 数 的 选择范围 8 由于采用了最小二乘损失函数$最小二乘隐空间支持向量机产生的优 化 问 题 为 无 约 束 凸 二 次 规
svm_v251
- 用于模式分类和预测的方法——支持向量机的TOOLBOX的程序,核函数选择为 RBF核函数-Method for pattern classification and prediction- SVM TOOLBOX program, RBF kernel function is selected as the kernel function
LS_SVMlab
- 支持向量机及核函数的matlab算法集-Matlab method for kernel function of support vector machine (SVM) and set
SVMcg
- 支持向量机参数选择,利用网格搜索法确定支持向量机的惩罚因子和RBF核参数-Support vector machine (SVM) parameters choice, the grid search method is used to determine the punishment factor and RBF kernel parameters of support vector machine (SVM)
SVM-KM
- SVM-KM工具箱 关于支持向量机核方法的有利工具(svm-km toolbox, a useful tool for support vector machine about kernel method.)
PSO-SVM
- 利用粒子群优化算法对支持向量机中的核函数参数和惩罚参数进行优化是非常有效的手段,可以大大提高鲁棒性。实际过程中读者可通过下载我上传的代码,简单进行修改和阅读附件论文即可快速掌握相关方面的知识,快速使用这一方法。(Particle swarm optimization (PSO) is a very effective method to optimize the kernel function parameters and penalty parameters of SVM, which can